库埃特流周围的理想磁流体力学:长时间稳定性和涡流不稳定性

IF 1.3 2区 数学 Q1 MATHEMATICS
Niklas Knobel
{"title":"库埃特流周围的理想磁流体力学:长时间稳定性和涡流不稳定性","authors":"Niklas Knobel","doi":"10.1016/j.na.2025.113937","DOIUrl":null,"url":null,"abstract":"<div><div>This article considers the ideal 2D magnetohydrodynamic equations in a infinite periodic channel close to a combination of an affine shear flow, called Couette flow, and a constant magnetic field. This incorporates important physical effects, including mixing and coupling of velocity and magnetic field. We establish the existence and stability of the velocity and magnetic field for Gevrey-class perturbations of size <span><math><mi>ɛ</mi></math></span>, valid up to times <span><math><mrow><mi>t</mi><mo>∼</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>. Additionally, the vorticity and current grow as <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and there is no inviscid damping of the velocity and magnetic field. This is similar to the above threshold case for the <span><math><mrow><mn>3</mn><mi>D</mi></mrow></math></span> Navier–Stokes (Jacob Bedrossian et al., 2022) where growth in ‘streaks’ leads to time scales of <span><math><mrow><mi>t</mi><mo>∼</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>. In particular, for the ideal MHD equations, our article suggests that for a wide range of initial data, the scenario “induction by shear <span><math><mo>⇒</mo></math></span> vorticity and current growth <span><math><mo>⇒</mo></math></span> vorticity and current breakdown” leads to instability and possible turbulences.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113937"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ideal magnetohydrodynamics around couette flow: Long time stability and vorticity–current instability\",\"authors\":\"Niklas Knobel\",\"doi\":\"10.1016/j.na.2025.113937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article considers the ideal 2D magnetohydrodynamic equations in a infinite periodic channel close to a combination of an affine shear flow, called Couette flow, and a constant magnetic field. This incorporates important physical effects, including mixing and coupling of velocity and magnetic field. We establish the existence and stability of the velocity and magnetic field for Gevrey-class perturbations of size <span><math><mi>ɛ</mi></math></span>, valid up to times <span><math><mrow><mi>t</mi><mo>∼</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>. Additionally, the vorticity and current grow as <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and there is no inviscid damping of the velocity and magnetic field. This is similar to the above threshold case for the <span><math><mrow><mn>3</mn><mi>D</mi></mrow></math></span> Navier–Stokes (Jacob Bedrossian et al., 2022) where growth in ‘streaks’ leads to time scales of <span><math><mrow><mi>t</mi><mo>∼</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>. In particular, for the ideal MHD equations, our article suggests that for a wide range of initial data, the scenario “induction by shear <span><math><mo>⇒</mo></math></span> vorticity and current growth <span><math><mo>⇒</mo></math></span> vorticity and current breakdown” leads to instability and possible turbulences.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113937\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001890\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001890","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了无限周期通道中的理想二维磁流体动力学方程,该通道接近仿射剪切流(称为Couette流)和恒定磁场的组合。这包含了重要的物理效应,包括速度和磁场的混合和耦合。我们建立了大小为i的gevrey类扰动的速度和磁场的存在性和稳定性,有效到t ~ i−1次。此外,涡度和电流以O(t)增长,并且速度和磁场没有无粘阻尼。这类似于上述三维Navier-Stokes的阈值情况(Jacob Bedrossian et al., 2022),其中“条纹”的增长导致时间尺度为t ~ ε−1。特别是,对于理想的MHD方程,我们的文章表明,对于大范围的初始数据,“剪切诱导⇒涡度和电流增长⇒涡度和电流击穿”的情况会导致不稳定和可能的湍流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ideal magnetohydrodynamics around couette flow: Long time stability and vorticity–current instability
This article considers the ideal 2D magnetohydrodynamic equations in a infinite periodic channel close to a combination of an affine shear flow, called Couette flow, and a constant magnetic field. This incorporates important physical effects, including mixing and coupling of velocity and magnetic field. We establish the existence and stability of the velocity and magnetic field for Gevrey-class perturbations of size ɛ, valid up to times tɛ1. Additionally, the vorticity and current grow as O(t) and there is no inviscid damping of the velocity and magnetic field. This is similar to the above threshold case for the 3D Navier–Stokes (Jacob Bedrossian et al., 2022) where growth in ‘streaks’ leads to time scales of tɛ1. In particular, for the ideal MHD equations, our article suggests that for a wide range of initial data, the scenario “induction by shear vorticity and current growth vorticity and current breakdown” leads to instability and possible turbulences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信