Jiangming Wei , Fanghua Xu , Xiaobo Wei , Jun Zhao , Jianhua Liu
{"title":"PIK3C3通过调节自噬影响免疫细胞功能,在脓毒症中发挥抗炎作用","authors":"Jiangming Wei , Fanghua Xu , Xiaobo Wei , Jun Zhao , Jianhua Liu","doi":"10.1016/j.gene.2025.149732","DOIUrl":null,"url":null,"abstract":"<div><div>Sepsis is a syndrome caused by an imbalance in the host’s immune response to pathogen infection, which can lead to systemic multiple organ dysfunction. Its pathological mechanisms are complex, and there are no specific biomarkers or targeted therapeutic drugs available. Recent investigations have revealed that phosphatidylinositol 3-kinase class III (PIK3C3/VPS34), a key regulator of autophagy, plays a critical immunomodulatory role. Specifically, PIK3C3 influences the activation, proliferation, survival, and apoptosis of immune cells. However, the precise mechanistic contribution of PIK3C3 to the pathogenesis of sepsis remains incompletely understood, with existing studies largely emphasizing its autophagy-related functions. Therefore, this review provides a comprehensive overview of PIK3C3 expression and function in immune cells, focusing on elucidating the molecular signaling pathways through which it modulates cellular metabolism and function via autophagy. By integrating our current understanding of immune cell involvement in the pathophysiology of sepsis, we propose that targeting PIK3C3 may represent a promising immunotherapeutic strategy to restore immune homeostasis and improve clinical outcomes in sepsis. This approach may offer novel avenues for the prevention and management of this life-threatening condition.</div></div>","PeriodicalId":12499,"journal":{"name":"Gene","volume":"968 ","pages":"Article 149732"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PIK3C3 influences immune cell function by modulating autophagy to exert anti-inflammatory effects in sepsis\",\"authors\":\"Jiangming Wei , Fanghua Xu , Xiaobo Wei , Jun Zhao , Jianhua Liu\",\"doi\":\"10.1016/j.gene.2025.149732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sepsis is a syndrome caused by an imbalance in the host’s immune response to pathogen infection, which can lead to systemic multiple organ dysfunction. Its pathological mechanisms are complex, and there are no specific biomarkers or targeted therapeutic drugs available. Recent investigations have revealed that phosphatidylinositol 3-kinase class III (PIK3C3/VPS34), a key regulator of autophagy, plays a critical immunomodulatory role. Specifically, PIK3C3 influences the activation, proliferation, survival, and apoptosis of immune cells. However, the precise mechanistic contribution of PIK3C3 to the pathogenesis of sepsis remains incompletely understood, with existing studies largely emphasizing its autophagy-related functions. Therefore, this review provides a comprehensive overview of PIK3C3 expression and function in immune cells, focusing on elucidating the molecular signaling pathways through which it modulates cellular metabolism and function via autophagy. By integrating our current understanding of immune cell involvement in the pathophysiology of sepsis, we propose that targeting PIK3C3 may represent a promising immunotherapeutic strategy to restore immune homeostasis and improve clinical outcomes in sepsis. This approach may offer novel avenues for the prevention and management of this life-threatening condition.</div></div>\",\"PeriodicalId\":12499,\"journal\":{\"name\":\"Gene\",\"volume\":\"968 \",\"pages\":\"Article 149732\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378111925005219\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378111925005219","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
PIK3C3 influences immune cell function by modulating autophagy to exert anti-inflammatory effects in sepsis
Sepsis is a syndrome caused by an imbalance in the host’s immune response to pathogen infection, which can lead to systemic multiple organ dysfunction. Its pathological mechanisms are complex, and there are no specific biomarkers or targeted therapeutic drugs available. Recent investigations have revealed that phosphatidylinositol 3-kinase class III (PIK3C3/VPS34), a key regulator of autophagy, plays a critical immunomodulatory role. Specifically, PIK3C3 influences the activation, proliferation, survival, and apoptosis of immune cells. However, the precise mechanistic contribution of PIK3C3 to the pathogenesis of sepsis remains incompletely understood, with existing studies largely emphasizing its autophagy-related functions. Therefore, this review provides a comprehensive overview of PIK3C3 expression and function in immune cells, focusing on elucidating the molecular signaling pathways through which it modulates cellular metabolism and function via autophagy. By integrating our current understanding of immune cell involvement in the pathophysiology of sepsis, we propose that targeting PIK3C3 may represent a promising immunotherapeutic strategy to restore immune homeostasis and improve clinical outcomes in sepsis. This approach may offer novel avenues for the prevention and management of this life-threatening condition.
期刊介绍:
Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.