Yuguang He , Sijia Hao , Yubin Chen , Shuangqiang Shi , Junpeng Tian , Cheng Yang
{"title":"生物质衍生的电磁波吸收多孔碳基复合材料","authors":"Yuguang He , Sijia Hao , Yubin Chen , Shuangqiang Shi , Junpeng Tian , Cheng Yang","doi":"10.1016/j.adna.2025.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>Electromagnetic wave-absorbing (EMWA) materials show great potential for radar stealth, electromagnetic shielding and advanced electronics. Biomass-derived porous carbon (BPC)-based composites have emerged as highly attractive EMWA materials due to their renewable sources, abundant availability, low cost, scalable production and highly tunable structures. This review provides a systematic summary of recent advancements in BPC-based composites for EMWA applications. First, the fundamental principles of microwave absorption are briefly outlined. Subsequently, common pretreatment methods for BPC-based materials are reviewed. The progress in BPC-based composites sourced from plants, animals and microorganisms is comprehensively examined, with a focus on the synergistic effects of micro/nanostructural engineering and composition optimization on their EMWA performance. Finally, current challenges and limitations of BPC-based EMWA materials are critically analyzed, along with prospects for future development.</div></div>","PeriodicalId":100034,"journal":{"name":"Advanced Nanocomposites","volume":"2 ","pages":"Pages 162-184"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomass-derived porous carbon-based composites for electromagnetic wave absorption\",\"authors\":\"Yuguang He , Sijia Hao , Yubin Chen , Shuangqiang Shi , Junpeng Tian , Cheng Yang\",\"doi\":\"10.1016/j.adna.2025.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electromagnetic wave-absorbing (EMWA) materials show great potential for radar stealth, electromagnetic shielding and advanced electronics. Biomass-derived porous carbon (BPC)-based composites have emerged as highly attractive EMWA materials due to their renewable sources, abundant availability, low cost, scalable production and highly tunable structures. This review provides a systematic summary of recent advancements in BPC-based composites for EMWA applications. First, the fundamental principles of microwave absorption are briefly outlined. Subsequently, common pretreatment methods for BPC-based materials are reviewed. The progress in BPC-based composites sourced from plants, animals and microorganisms is comprehensively examined, with a focus on the synergistic effects of micro/nanostructural engineering and composition optimization on their EMWA performance. Finally, current challenges and limitations of BPC-based EMWA materials are critically analyzed, along with prospects for future development.</div></div>\",\"PeriodicalId\":100034,\"journal\":{\"name\":\"Advanced Nanocomposites\",\"volume\":\"2 \",\"pages\":\"Pages 162-184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanocomposites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949944525000073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanocomposites","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949944525000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biomass-derived porous carbon-based composites for electromagnetic wave absorption
Electromagnetic wave-absorbing (EMWA) materials show great potential for radar stealth, electromagnetic shielding and advanced electronics. Biomass-derived porous carbon (BPC)-based composites have emerged as highly attractive EMWA materials due to their renewable sources, abundant availability, low cost, scalable production and highly tunable structures. This review provides a systematic summary of recent advancements in BPC-based composites for EMWA applications. First, the fundamental principles of microwave absorption are briefly outlined. Subsequently, common pretreatment methods for BPC-based materials are reviewed. The progress in BPC-based composites sourced from plants, animals and microorganisms is comprehensively examined, with a focus on the synergistic effects of micro/nanostructural engineering and composition optimization on their EMWA performance. Finally, current challenges and limitations of BPC-based EMWA materials are critically analyzed, along with prospects for future development.