碳“帽”诱导自组装行为研究

IF 2.4 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Qiang Zhang , Danhui Zhang , Xiangfei Ji , Houbo Yang , Dengbo Zhang , Ruquan Liang , Wenqiang Hu
{"title":"碳“帽”诱导自组装行为研究","authors":"Qiang Zhang ,&nbsp;Danhui Zhang ,&nbsp;Xiangfei Ji ,&nbsp;Houbo Yang ,&nbsp;Dengbo Zhang ,&nbsp;Ruquan Liang ,&nbsp;Wenqiang Hu","doi":"10.1016/j.ssc.2025.116129","DOIUrl":null,"url":null,"abstract":"<div><div>There are many types of carbon materials. In this manuscript, a new type of carbon structure, the \"carbon cap\", is proposed. We employed molecular dynamic simulations to investigate the carbon cap-induced self-assembly mechanism of polyethyne chains. It is found that four carbon caps arranged in parallel can successfully induce the polyethyne chain to self-curl into a helical structure, and all the carbon caps are located inside the helical structure. In addition, the effects of the number of carbon caps, the length of the polyethyne chain, and the simulation temperature on the final configuration were investigated. This study will provide theoretical support for the construction of novel carbon composites.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"404 ","pages":"Article 116129"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on carbon \\\"cap\\\" induced self-assembly behavior\",\"authors\":\"Qiang Zhang ,&nbsp;Danhui Zhang ,&nbsp;Xiangfei Ji ,&nbsp;Houbo Yang ,&nbsp;Dengbo Zhang ,&nbsp;Ruquan Liang ,&nbsp;Wenqiang Hu\",\"doi\":\"10.1016/j.ssc.2025.116129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>There are many types of carbon materials. In this manuscript, a new type of carbon structure, the \\\"carbon cap\\\", is proposed. We employed molecular dynamic simulations to investigate the carbon cap-induced self-assembly mechanism of polyethyne chains. It is found that four carbon caps arranged in parallel can successfully induce the polyethyne chain to self-curl into a helical structure, and all the carbon caps are located inside the helical structure. In addition, the effects of the number of carbon caps, the length of the polyethyne chain, and the simulation temperature on the final configuration were investigated. This study will provide theoretical support for the construction of novel carbon composites.</div></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"404 \",\"pages\":\"Article 116129\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109825003047\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825003047","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

碳材料有很多种。本文提出了一种新型的碳结构——“碳帽”。采用分子动力学模拟方法研究了碳帽诱导聚乙烯链自组装的机理。发现平行排列的4个碳帽能成功诱导聚乙烯链自旋成螺旋结构,且所有碳帽均位于螺旋结构内。此外,还考察了碳帽数、聚乙烯链长度和模拟温度对最终构型的影响。本研究将为新型碳复合材料的构建提供理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on carbon "cap" induced self-assembly behavior
There are many types of carbon materials. In this manuscript, a new type of carbon structure, the "carbon cap", is proposed. We employed molecular dynamic simulations to investigate the carbon cap-induced self-assembly mechanism of polyethyne chains. It is found that four carbon caps arranged in parallel can successfully induce the polyethyne chain to self-curl into a helical structure, and all the carbon caps are located inside the helical structure. In addition, the effects of the number of carbon caps, the length of the polyethyne chain, and the simulation temperature on the final configuration were investigated. This study will provide theoretical support for the construction of novel carbon composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Communications
Solid State Communications 物理-物理:凝聚态物理
CiteScore
3.40
自引率
4.80%
发文量
287
审稿时长
51 days
期刊介绍: Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged. A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions. The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信