模块化自动驾驶汽车的安全保障自适应控制

IF 14.5 Q1 TRANSPORTATION
Chengyuan Ma, Hang Zhou, Peng Zhang, Ke Ma, Haotian Shi, Xiaopeng Li
{"title":"模块化自动驾驶汽车的安全保障自适应控制","authors":"Chengyuan Ma,&nbsp;Hang Zhou,&nbsp;Peng Zhang,&nbsp;Ke Ma,&nbsp;Haotian Shi,&nbsp;Xiaopeng Li","doi":"10.1016/j.commtr.2025.100204","DOIUrl":null,"url":null,"abstract":"<div><div>Recent studies and industry developments indicate that modular autonomous vehicles (MAVs) have the potential to enhance transportation systems by offering vehicles with adjustable capacities en route. However, the practical realization of reliable control during docking/undocking operations remains a significant challenge, primarily due to safety concerns arising from the close proximity of MAVs. This study proposes a safety assurance adaptive model predictive control (SAAMPC) framework to achieve distributed docking/undocking operations for MAVs in uncertain environments. The SAAMPC framework integrates a model predictive control (MPC) controller for trajectory optimization, an adaptive module for dynamic adjustment of control parameters with disturbance, and an adaptive safety assurance module with longitudinal and lateral control barrier functions (CFB) to ensure safe operation during risky and uncertain conditions. The effectiveness of the proposed approach is validated through simulations in Simulink and field tests on a reduced-scale MAV platform. Experimental results validate that the SAAMPC framework successfully ensures smooth and safe vehicle following and robust execution of docking/undocking operations under uncertainties.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100204"},"PeriodicalIF":14.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety assurance adaptive control for modular autonomous vehicles\",\"authors\":\"Chengyuan Ma,&nbsp;Hang Zhou,&nbsp;Peng Zhang,&nbsp;Ke Ma,&nbsp;Haotian Shi,&nbsp;Xiaopeng Li\",\"doi\":\"10.1016/j.commtr.2025.100204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent studies and industry developments indicate that modular autonomous vehicles (MAVs) have the potential to enhance transportation systems by offering vehicles with adjustable capacities en route. However, the practical realization of reliable control during docking/undocking operations remains a significant challenge, primarily due to safety concerns arising from the close proximity of MAVs. This study proposes a safety assurance adaptive model predictive control (SAAMPC) framework to achieve distributed docking/undocking operations for MAVs in uncertain environments. The SAAMPC framework integrates a model predictive control (MPC) controller for trajectory optimization, an adaptive module for dynamic adjustment of control parameters with disturbance, and an adaptive safety assurance module with longitudinal and lateral control barrier functions (CFB) to ensure safe operation during risky and uncertain conditions. The effectiveness of the proposed approach is validated through simulations in Simulink and field tests on a reduced-scale MAV platform. Experimental results validate that the SAAMPC framework successfully ensures smooth and safe vehicle following and robust execution of docking/undocking operations under uncertainties.</div></div>\",\"PeriodicalId\":100292,\"journal\":{\"name\":\"Communications in Transportation Research\",\"volume\":\"5 \",\"pages\":\"Article 100204\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Transportation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772424725000447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究和行业发展表明,模块化自动驾驶汽车(MAVs)有潜力通过在途中提供可调节容量的车辆来增强运输系统。然而,在对接/分离操作过程中实现可靠的控制仍然是一个重大挑战,主要是由于mav的近距离引起的安全问题。本文提出了一种安全保证自适应模型预测控制(SAAMPC)框架,以实现不确定环境下自主飞行器的分布式对接/离坞操作。SAAMPC框架集成了一个用于轨迹优化的模型预测控制(MPC)控制器,一个用于在干扰下动态调整控制参数的自适应模块,以及一个具有纵向和横向控制屏障函数(CFB)的自适应安全保证模块,以确保在危险和不确定条件下的安全运行。通过Simulink仿真和小型MAV平台的现场测试,验证了该方法的有效性。实验结果表明,SAAMPC框架成功地保证了不确定条件下车辆的平稳、安全跟随和稳健的对接/分离操作执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Safety assurance adaptive control for modular autonomous vehicles
Recent studies and industry developments indicate that modular autonomous vehicles (MAVs) have the potential to enhance transportation systems by offering vehicles with adjustable capacities en route. However, the practical realization of reliable control during docking/undocking operations remains a significant challenge, primarily due to safety concerns arising from the close proximity of MAVs. This study proposes a safety assurance adaptive model predictive control (SAAMPC) framework to achieve distributed docking/undocking operations for MAVs in uncertain environments. The SAAMPC framework integrates a model predictive control (MPC) controller for trajectory optimization, an adaptive module for dynamic adjustment of control parameters with disturbance, and an adaptive safety assurance module with longitudinal and lateral control barrier functions (CFB) to ensure safe operation during risky and uncertain conditions. The effectiveness of the proposed approach is validated through simulations in Simulink and field tests on a reduced-scale MAV platform. Experimental results validate that the SAAMPC framework successfully ensures smooth and safe vehicle following and robust execution of docking/undocking operations under uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信