跨城市迁移学习:智慧城市和可持续交通的应用与挑战

IF 14.5 Q1 TRANSPORTATION
Ying Yang , Jiahao Zhan , Yang Liu , Qi Wang
{"title":"跨城市迁移学习:智慧城市和可持续交通的应用与挑战","authors":"Ying Yang ,&nbsp;Jiahao Zhan ,&nbsp;Yang Liu ,&nbsp;Qi Wang","doi":"10.1016/j.commtr.2025.100206","DOIUrl":null,"url":null,"abstract":"<div><div>Cross-city transfer learning (CCTL) has emerged as a crucial approach for managing the growing complexity of urban data and addressing the challenges posed by rapid urbanization. This paper provides a comprehensive review of recent advances in CCTL, with a focus on its applications in urban computing tasks, including prediction, detection, and deployment. We examine the role of CCTL in facilitating policy adaptation and influencing behavioral change. Specifically, we provide a systematic overview of widely used datasets, including traffic sensor data, GPS trajectory data, online social network data, and map data. Furthermore, we conduct an in-depth analysis of methods and evaluation metrics employed across different CCTL-based urban computing tasks. Finally, we emphasize the potential of cross-city policy transfer in promoting low-carbon and sustainable urban development. This review aims to serve as a reference for future urban development research and promote the practical implementation of CCTLs.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100206"},"PeriodicalIF":14.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-city transfer learning: Applications and challenges for smart cities and sustainable transportation\",\"authors\":\"Ying Yang ,&nbsp;Jiahao Zhan ,&nbsp;Yang Liu ,&nbsp;Qi Wang\",\"doi\":\"10.1016/j.commtr.2025.100206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cross-city transfer learning (CCTL) has emerged as a crucial approach for managing the growing complexity of urban data and addressing the challenges posed by rapid urbanization. This paper provides a comprehensive review of recent advances in CCTL, with a focus on its applications in urban computing tasks, including prediction, detection, and deployment. We examine the role of CCTL in facilitating policy adaptation and influencing behavioral change. Specifically, we provide a systematic overview of widely used datasets, including traffic sensor data, GPS trajectory data, online social network data, and map data. Furthermore, we conduct an in-depth analysis of methods and evaluation metrics employed across different CCTL-based urban computing tasks. Finally, we emphasize the potential of cross-city policy transfer in promoting low-carbon and sustainable urban development. This review aims to serve as a reference for future urban development research and promote the practical implementation of CCTLs.</div></div>\",\"PeriodicalId\":100292,\"journal\":{\"name\":\"Communications in Transportation Research\",\"volume\":\"5 \",\"pages\":\"Article 100206\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Transportation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772424725000460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

跨城市迁移学习(CCTL)已成为管理日益复杂的城市数据和应对快速城市化带来的挑战的关键方法。本文全面回顾了CCTL的最新进展,重点介绍了CCTL在城市计算任务中的应用,包括预测、检测和部署。我们研究了CCTL在促进政策适应和影响行为改变方面的作用。具体而言,我们提供了广泛使用的数据集的系统概述,包括交通传感器数据,GPS轨迹数据,在线社交网络数据和地图数据。此外,我们对不同基于cctl的城市计算任务所采用的方法和评估指标进行了深入分析。最后,我们强调跨城市政策转移在促进低碳和可持续城市发展方面的潜力。本文旨在为未来城市发展研究提供参考,并促进cctl的实际实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-city transfer learning: Applications and challenges for smart cities and sustainable transportation
Cross-city transfer learning (CCTL) has emerged as a crucial approach for managing the growing complexity of urban data and addressing the challenges posed by rapid urbanization. This paper provides a comprehensive review of recent advances in CCTL, with a focus on its applications in urban computing tasks, including prediction, detection, and deployment. We examine the role of CCTL in facilitating policy adaptation and influencing behavioral change. Specifically, we provide a systematic overview of widely used datasets, including traffic sensor data, GPS trajectory data, online social network data, and map data. Furthermore, we conduct an in-depth analysis of methods and evaluation metrics employed across different CCTL-based urban computing tasks. Finally, we emphasize the potential of cross-city policy transfer in promoting low-carbon and sustainable urban development. This review aims to serve as a reference for future urban development research and promote the practical implementation of CCTLs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信