玻璃/环氧复合材料的分层增韧:纤维织构尺度和橡胶纳米纤维交织物对抗分层的协同作用

IF 5.6 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Hesamaldin Saghafi , Isa Ahmadi , Ramin Khamedi , Hamed Saghafi , Andrea Zucchelli
{"title":"玻璃/环氧复合材料的分层增韧:纤维织构尺度和橡胶纳米纤维交织物对抗分层的协同作用","authors":"Hesamaldin Saghafi ,&nbsp;Isa Ahmadi ,&nbsp;Ramin Khamedi ,&nbsp;Hamed Saghafi ,&nbsp;Andrea Zucchelli","doi":"10.1016/j.tafmec.2025.105208","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates synergistic toughening in glass/epoxy composites through fiber texture scaling (560–2000 µm bundles) and NBR/PCL nanofiber interleaves. Coarser textures inherently increased fracture toughness by 95–100 % via fiber bridging and crack-path tortuosity. Nanofiber integration amplified this effect, with coarse-textured nano-modified composites achieving 125 % higher toughness than non-modified counterparts. Key mechanisms included matrix plastic deformation (microvoid formation), enhanced fiber–matrix adhesion (resin-coated fibers), and crack bifurcation. Rising R-curves confirmed progressive energy dissipation, while sawtooth force–displacement patterns revealed intermittent crack arrest at nanofiber-rich zones. SEM analysis showed a transition from brittle failure (smooth interfaces) in non-modified samples to ductile failure (rough, porous morphologies) in nano-modified systems. The macro-nano synergy enabled simultaneous improvements in fracture resistance (G<sub>IC</sub> ↑125 %, G<sub>IR</sub> ↑162 %), peak load (↑48 %), and energy absorption without compromising in-plane properties. These results establish a multi-scale design paradigm for aerospace/automotive composites requiring balanced delamination resistance and structural efficiency.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"140 ","pages":"Article 105208"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical toughening in Glass/Epoxy Composites: Synergistic effects of fiber texture scale and rubbery nanofiber interleaves on delamination resistance\",\"authors\":\"Hesamaldin Saghafi ,&nbsp;Isa Ahmadi ,&nbsp;Ramin Khamedi ,&nbsp;Hamed Saghafi ,&nbsp;Andrea Zucchelli\",\"doi\":\"10.1016/j.tafmec.2025.105208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates synergistic toughening in glass/epoxy composites through fiber texture scaling (560–2000 µm bundles) and NBR/PCL nanofiber interleaves. Coarser textures inherently increased fracture toughness by 95–100 % via fiber bridging and crack-path tortuosity. Nanofiber integration amplified this effect, with coarse-textured nano-modified composites achieving 125 % higher toughness than non-modified counterparts. Key mechanisms included matrix plastic deformation (microvoid formation), enhanced fiber–matrix adhesion (resin-coated fibers), and crack bifurcation. Rising R-curves confirmed progressive energy dissipation, while sawtooth force–displacement patterns revealed intermittent crack arrest at nanofiber-rich zones. SEM analysis showed a transition from brittle failure (smooth interfaces) in non-modified samples to ductile failure (rough, porous morphologies) in nano-modified systems. The macro-nano synergy enabled simultaneous improvements in fracture resistance (G<sub>IC</sub> ↑125 %, G<sub>IR</sub> ↑162 %), peak load (↑48 %), and energy absorption without compromising in-plane properties. These results establish a multi-scale design paradigm for aerospace/automotive composites requiring balanced delamination resistance and structural efficiency.</div></div>\",\"PeriodicalId\":22879,\"journal\":{\"name\":\"Theoretical and Applied Fracture Mechanics\",\"volume\":\"140 \",\"pages\":\"Article 105208\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167844225003660\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844225003660","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过纤维织构结垢(560-2000µm束)和NBR/PCL纳米纤维交织,研究了玻璃/环氧复合材料的协同增韧。通过纤维桥接和裂纹路径弯曲,较粗糙的纹理固有地增加了95 - 100%的断裂韧性。纳米纤维的集成放大了这种效应,与未改性的同类相比,粗糙纹理的纳米改性复合材料的韧性提高了125%。关键机制包括基体塑性变形(微孔隙形成),增强纤维-基体粘附(树脂涂层纤维)和裂纹分岔。上升的r曲线证实了能量的逐渐耗散,而锯齿形的力-位移模式显示了富含纳米纤维区域的间歇性裂纹止裂。扫描电镜分析显示,未改性样品的脆性破坏(光滑界面)向纳米改性系统的延性破坏(粗糙,多孔形态)转变。宏纳米协同作用可以同时提高抗断裂性能(GIC ^ 125%, GIR ^ 162%),峰值载荷(^ 48%)和能量吸收,而不影响面内性能。这些结果建立了航空航天/汽车复合材料的多尺度设计范式,要求平衡分层阻力和结构效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical toughening in Glass/Epoxy Composites: Synergistic effects of fiber texture scale and rubbery nanofiber interleaves on delamination resistance
This study investigates synergistic toughening in glass/epoxy composites through fiber texture scaling (560–2000 µm bundles) and NBR/PCL nanofiber interleaves. Coarser textures inherently increased fracture toughness by 95–100 % via fiber bridging and crack-path tortuosity. Nanofiber integration amplified this effect, with coarse-textured nano-modified composites achieving 125 % higher toughness than non-modified counterparts. Key mechanisms included matrix plastic deformation (microvoid formation), enhanced fiber–matrix adhesion (resin-coated fibers), and crack bifurcation. Rising R-curves confirmed progressive energy dissipation, while sawtooth force–displacement patterns revealed intermittent crack arrest at nanofiber-rich zones. SEM analysis showed a transition from brittle failure (smooth interfaces) in non-modified samples to ductile failure (rough, porous morphologies) in nano-modified systems. The macro-nano synergy enabled simultaneous improvements in fracture resistance (GIC ↑125 %, GIR ↑162 %), peak load (↑48 %), and energy absorption without compromising in-plane properties. These results establish a multi-scale design paradigm for aerospace/automotive composites requiring balanced delamination resistance and structural efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信