生成人工智能时代的网络安全:人工智能驱动的脆弱性评估和风险管理的系统分类法

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Seyedeh Leili Mirtaheri , Narges Movahed , Reza Shahbazian , Valerio Pascucci , Andrea Pugliese
{"title":"生成人工智能时代的网络安全:人工智能驱动的脆弱性评估和风险管理的系统分类法","authors":"Seyedeh Leili Mirtaheri ,&nbsp;Narges Movahed ,&nbsp;Reza Shahbazian ,&nbsp;Valerio Pascucci ,&nbsp;Andrea Pugliese","doi":"10.1016/j.future.2025.108107","DOIUrl":null,"url":null,"abstract":"<div><div>The article discusses the transformative impact of Generative AI (GenAI) to the field of vulnerability assessment (VA) and risk management (RM) right from the beginning of their life cycle to the end in cybersecurity (CS). Through a systematic review of over 100 publications (2021-2025), we develop a comprehensive taxonomy classifying GenAI’s dual offensive and defensive applications in VA/RM. The survey spells out the dominant techniques of GenAI and also points towards challenging aspects, which include security, explainability, and trustworthiness. The resultant findings reinforce the belief that GenAI could help resolve many traditional VA/RM challenges, thus providing fertile ground for research and practice in this area.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"175 ","pages":"Article 108107"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cybersecurity in the age of generative AI: A systematic taxonomy of AI-powered vulnerability assessment and risk management\",\"authors\":\"Seyedeh Leili Mirtaheri ,&nbsp;Narges Movahed ,&nbsp;Reza Shahbazian ,&nbsp;Valerio Pascucci ,&nbsp;Andrea Pugliese\",\"doi\":\"10.1016/j.future.2025.108107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The article discusses the transformative impact of Generative AI (GenAI) to the field of vulnerability assessment (VA) and risk management (RM) right from the beginning of their life cycle to the end in cybersecurity (CS). Through a systematic review of over 100 publications (2021-2025), we develop a comprehensive taxonomy classifying GenAI’s dual offensive and defensive applications in VA/RM. The survey spells out the dominant techniques of GenAI and also points towards challenging aspects, which include security, explainability, and trustworthiness. The resultant findings reinforce the belief that GenAI could help resolve many traditional VA/RM challenges, thus providing fertile ground for research and practice in this area.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"175 \",\"pages\":\"Article 108107\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X25004017\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25004017","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了生成式人工智能(GenAI)对脆弱性评估(VA)和风险管理(RM)领域的变革性影响,从其生命周期的开始到网络安全(CS)的结束。通过对100多篇出版物(2021-2025)的系统回顾,我们对GenAI在VA/RM中的双重进攻和防御应用进行了综合分类。该调查阐明了GenAI的主要技术,也指出了具有挑战性的方面,包括安全性、可解释性和可信度。由此产生的研究结果强化了GenAI可以帮助解决许多传统的VA/RM挑战的信念,从而为该领域的研究和实践提供了肥沃的土壤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cybersecurity in the age of generative AI: A systematic taxonomy of AI-powered vulnerability assessment and risk management
The article discusses the transformative impact of Generative AI (GenAI) to the field of vulnerability assessment (VA) and risk management (RM) right from the beginning of their life cycle to the end in cybersecurity (CS). Through a systematic review of over 100 publications (2021-2025), we develop a comprehensive taxonomy classifying GenAI’s dual offensive and defensive applications in VA/RM. The survey spells out the dominant techniques of GenAI and also points towards challenging aspects, which include security, explainability, and trustworthiness. The resultant findings reinforce the belief that GenAI could help resolve many traditional VA/RM challenges, thus providing fertile ground for research and practice in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信