SMPL-IKS:一种用于三维人体网格恢复的混合分析-神经逆运动学求解器

IF 9.3 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zijian Zhang, Muqing Wu, Honghao Qi, Tianyi Ma, Min Zhao
{"title":"SMPL-IKS:一种用于三维人体网格恢复的混合分析-神经逆运动学求解器","authors":"Zijian Zhang, Muqing Wu, Honghao Qi, Tianyi Ma, Min Zhao","doi":"10.1007/s11263-025-02574-5","DOIUrl":null,"url":null,"abstract":"<p>We present SMPL-IKS, a mixed analytical-neural inverse kinematics solver that operates on the well-known Skinned Multi-Person Linear model (SMPL) to recover human mesh from 3D skeleton. The key challenges in the task are threefold: (1) Shape Mismatching, (2) Error Accumulation, and (3) Rotation Ambiguity. Unlike previous methods that rely on costly vertex up-sampling or iterative optimization, SMPL-IKS directly regresses the SMPL parameters (<i>i.e.</i>, shape and pose parameters) in a clean and efficient way. Specifically, we propose to infer <i>skeleton-to-mesh</i> via three explicit mappings viz. <i>Shape Inverse (SI)</i>, <i>Inverse kinematics (IK)</i>, and <i>Pose Refinement (PR)</i>. SI maps bone length to shape parameters, IK maps bone direction to pose parameters, and PR addresses errors accumulated along the kinematic tree. SMPL-IKS is general and thus extensible to MANO or SMPL-H models. Extensive experiments are conducted on various benchmarks for body-only, hand-only, and body-hand scenarios. Our model surpasses state-of-the-art methods by a large margin while being much more efficient. Data and code are available at https://github.com/Z-Z-J/SMPL-IKS.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"31 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMPL-IKS: A Mixed Analytical-Neural Inverse Kinematics Solver for 3D Human Mesh Recovery\",\"authors\":\"Zijian Zhang, Muqing Wu, Honghao Qi, Tianyi Ma, Min Zhao\",\"doi\":\"10.1007/s11263-025-02574-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present SMPL-IKS, a mixed analytical-neural inverse kinematics solver that operates on the well-known Skinned Multi-Person Linear model (SMPL) to recover human mesh from 3D skeleton. The key challenges in the task are threefold: (1) Shape Mismatching, (2) Error Accumulation, and (3) Rotation Ambiguity. Unlike previous methods that rely on costly vertex up-sampling or iterative optimization, SMPL-IKS directly regresses the SMPL parameters (<i>i.e.</i>, shape and pose parameters) in a clean and efficient way. Specifically, we propose to infer <i>skeleton-to-mesh</i> via three explicit mappings viz. <i>Shape Inverse (SI)</i>, <i>Inverse kinematics (IK)</i>, and <i>Pose Refinement (PR)</i>. SI maps bone length to shape parameters, IK maps bone direction to pose parameters, and PR addresses errors accumulated along the kinematic tree. SMPL-IKS is general and thus extensible to MANO or SMPL-H models. Extensive experiments are conducted on various benchmarks for body-only, hand-only, and body-hand scenarios. Our model surpasses state-of-the-art methods by a large margin while being much more efficient. Data and code are available at https://github.com/Z-Z-J/SMPL-IKS.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02574-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02574-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了SMPL- iks,这是一个混合分析-神经逆运动学求解器,它运行在众所周知的蒙皮多人线性模型(SMPL)上,从3D骨骼中恢复人体网格。该任务的主要挑战有三个方面:(1)形状不匹配,(2)误差积累,(3)旋转模糊。与以前依赖于昂贵的顶点上采样或迭代优化的方法不同,SMPL- iks以一种干净有效的方式直接回归SMPL参数(即形状和姿态参数)。具体来说,我们建议通过三个显式映射来推断骨骼到网格,即形状逆(SI),逆运动学(IK)和姿态精细(PR)。SI将骨长度映射到形状参数,IK将骨方向映射到位姿参数,PR处理沿着运动学树积累的误差。SMPL-IKS是通用的,因此可扩展到MANO或SMPL-H模型。在身体,手和身体-手场景的各种基准上进行了广泛的实验。我们的模型大大超过了最先进的方法,同时效率更高。数据和代码可在https://github.com/Z-Z-J/SMPL-IKS上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SMPL-IKS: A Mixed Analytical-Neural Inverse Kinematics Solver for 3D Human Mesh Recovery

We present SMPL-IKS, a mixed analytical-neural inverse kinematics solver that operates on the well-known Skinned Multi-Person Linear model (SMPL) to recover human mesh from 3D skeleton. The key challenges in the task are threefold: (1) Shape Mismatching, (2) Error Accumulation, and (3) Rotation Ambiguity. Unlike previous methods that rely on costly vertex up-sampling or iterative optimization, SMPL-IKS directly regresses the SMPL parameters (i.e., shape and pose parameters) in a clean and efficient way. Specifically, we propose to infer skeleton-to-mesh via three explicit mappings viz. Shape Inverse (SI), Inverse kinematics (IK), and Pose Refinement (PR). SI maps bone length to shape parameters, IK maps bone direction to pose parameters, and PR addresses errors accumulated along the kinematic tree. SMPL-IKS is general and thus extensible to MANO or SMPL-H models. Extensive experiments are conducted on various benchmarks for body-only, hand-only, and body-hand scenarios. Our model surpasses state-of-the-art methods by a large margin while being much more efficient. Data and code are available at https://github.com/Z-Z-J/SMPL-IKS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信