耦合光学微分的深度

IF 9.3 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Junjie Luo, Yuxuan Liu, Emma Alexander, Qi Guo
{"title":"耦合光学微分的深度","authors":"Junjie Luo, Yuxuan Liu, Emma Alexander, Qi Guo","doi":"10.1007/s11263-025-02534-z","DOIUrl":null,"url":null,"abstract":"<p>We propose depth from coupled optical differentiation, a low-computation passive-lighting 3D sensing mechanism. It is based on our discovery that per-pixel object distance can be rigorously determined by a coupled pair of optical derivatives of a defocused image using a simple, closed-form relationship. Unlike previous depth-from-defocus (DfD) methods that leverage higher-order spatial derivatives of the image to estimate scene depths, the proposed mechanism’s use of only first-order optical derivatives makes it significantly more robust to noise. Furthermore, unlike many previous DfD algorithms with requirements on aperture code, this relationship is proved to be universal to a broad range of aperture codes. We build the first 3D sensor based on depth from coupled optical differentiation. Its optical assembly includes a deformable lens and a motorized iris, which enables dynamic adjustments to the optical power and aperture radius. The sensor captures two pairs of images: one pair with a differential change of optical power and the other with a differential change of aperture scale. From the four images, a depth and confidence map can be generated with only 36 floating point operations per output pixel (FLOPOP), more than ten times lower than the previous lowest passive-lighting depth sensing solution to our knowledge. Additionally, the depth map generated by the proposed sensor demonstrates more than twice the working range of previous DfD methods while using significantly lower computation.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"116 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depth from Coupled Optical Differentiation\",\"authors\":\"Junjie Luo, Yuxuan Liu, Emma Alexander, Qi Guo\",\"doi\":\"10.1007/s11263-025-02534-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose depth from coupled optical differentiation, a low-computation passive-lighting 3D sensing mechanism. It is based on our discovery that per-pixel object distance can be rigorously determined by a coupled pair of optical derivatives of a defocused image using a simple, closed-form relationship. Unlike previous depth-from-defocus (DfD) methods that leverage higher-order spatial derivatives of the image to estimate scene depths, the proposed mechanism’s use of only first-order optical derivatives makes it significantly more robust to noise. Furthermore, unlike many previous DfD algorithms with requirements on aperture code, this relationship is proved to be universal to a broad range of aperture codes. We build the first 3D sensor based on depth from coupled optical differentiation. Its optical assembly includes a deformable lens and a motorized iris, which enables dynamic adjustments to the optical power and aperture radius. The sensor captures two pairs of images: one pair with a differential change of optical power and the other with a differential change of aperture scale. From the four images, a depth and confidence map can be generated with only 36 floating point operations per output pixel (FLOPOP), more than ten times lower than the previous lowest passive-lighting depth sensing solution to our knowledge. Additionally, the depth map generated by the proposed sensor demonstrates more than twice the working range of previous DfD methods while using significantly lower computation.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02534-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02534-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种低计算的被动照明三维传感机制——耦合光学微分的深度。这是基于我们的发现,每像素对象的距离可以严格地由一个离焦图像的光学导数使用一个简单的,封闭形式的关系的耦合对确定。与先前利用图像的高阶空间导数来估计场景深度的离焦深度(DfD)方法不同,所提出的机制仅使用一阶光学导数,使其对噪声的鲁棒性显著增强。此外,与以往许多对孔径码有要求的DfD算法不同,该关系被证明适用于广泛的孔径码。我们建立了第一个基于耦合光学微分深度的三维传感器。它的光学组件包括一个可变形透镜和一个机动光圈,可以动态调整光功率和光圈半径。传感器捕获两对图像:一对光功率的微分变化,另一对孔径尺度的微分变化。从这四幅图像中,每个输出像素(FLOPOP)只需36个浮点运算就可以生成深度和置信度图,比我们所知的之前最低的被动照明深度感测解决方案低十倍以上。此外,该传感器生成的深度图的工作范围是以前DfD方法的两倍以上,同时使用的计算量大大减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depth from Coupled Optical Differentiation

We propose depth from coupled optical differentiation, a low-computation passive-lighting 3D sensing mechanism. It is based on our discovery that per-pixel object distance can be rigorously determined by a coupled pair of optical derivatives of a defocused image using a simple, closed-form relationship. Unlike previous depth-from-defocus (DfD) methods that leverage higher-order spatial derivatives of the image to estimate scene depths, the proposed mechanism’s use of only first-order optical derivatives makes it significantly more robust to noise. Furthermore, unlike many previous DfD algorithms with requirements on aperture code, this relationship is proved to be universal to a broad range of aperture codes. We build the first 3D sensor based on depth from coupled optical differentiation. Its optical assembly includes a deformable lens and a motorized iris, which enables dynamic adjustments to the optical power and aperture radius. The sensor captures two pairs of images: one pair with a differential change of optical power and the other with a differential change of aperture scale. From the four images, a depth and confidence map can be generated with only 36 floating point operations per output pixel (FLOPOP), more than ten times lower than the previous lowest passive-lighting depth sensing solution to our knowledge. Additionally, the depth map generated by the proposed sensor demonstrates more than twice the working range of previous DfD methods while using significantly lower computation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信