学会纠正CLIP对无监督语义分割的偏见

IF 9.3 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jingyun Wang, Guoliang Kang
{"title":"学会纠正CLIP对无监督语义分割的偏见","authors":"Jingyun Wang, Guoliang Kang","doi":"10.1007/s11263-025-02566-5","DOIUrl":null,"url":null,"abstract":"<p>Recent works utilize CLIP to perform the challenging unsupervised semantic segmentation task where only images without annotations are available. However, we observe that when adopting CLIP to such a pixel-level understanding task, unexpected bias (including class-preference bias and space-preference bias) occurs. Previous works don’t explicitly model the bias, which largely constrains the segmentation performance. In this paper, we propose to explicitly model and rectify the bias existing in CLIP to facilitate the unsupervised semantic segmentation task. Specifically, we design a learnable “Reference” prompt to encode class-preference bias and a projection of the positional embedding in the vision transformer to encode space-preference bias respectively. To avoid interference, two kinds of biases are firstly independently encoded into different features, <i>i.e.,</i> the Reference feature and the positional feature. Via a matrix multiplication between the Reference feature and the positional feature, a bias logit map is generated to explicitly represent two kinds of biases. Then we rectify the logits of CLIP via a simple element-wise subtraction. To make the rectified results smoother and more contextual, we design a mask decoder which takes the feature of CLIP and the rectified logits as input and outputs a rectified segmentation mask with the help of Gumbel-Softmax operation. A contrastive loss based on the masked visual features and the text features of different classes is imposed, which makes the bias modeling and rectification process meaningful and effective. Extensive experiments on various benchmarks including PASCAL VOC, PASCAL Context, ADE20K, Cityscapes, and COCO Stuff demonstrate that our method performs favorably against previous state-of-the-arts. The implementation is available at: https://github.com/dogehhh/ReCLIP.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"24 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ReCLIP++: Learn to Rectify the Bias of CLIP for Unsupervised Semantic Segmentation\",\"authors\":\"Jingyun Wang, Guoliang Kang\",\"doi\":\"10.1007/s11263-025-02566-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent works utilize CLIP to perform the challenging unsupervised semantic segmentation task where only images without annotations are available. However, we observe that when adopting CLIP to such a pixel-level understanding task, unexpected bias (including class-preference bias and space-preference bias) occurs. Previous works don’t explicitly model the bias, which largely constrains the segmentation performance. In this paper, we propose to explicitly model and rectify the bias existing in CLIP to facilitate the unsupervised semantic segmentation task. Specifically, we design a learnable “Reference” prompt to encode class-preference bias and a projection of the positional embedding in the vision transformer to encode space-preference bias respectively. To avoid interference, two kinds of biases are firstly independently encoded into different features, <i>i.e.,</i> the Reference feature and the positional feature. Via a matrix multiplication between the Reference feature and the positional feature, a bias logit map is generated to explicitly represent two kinds of biases. Then we rectify the logits of CLIP via a simple element-wise subtraction. To make the rectified results smoother and more contextual, we design a mask decoder which takes the feature of CLIP and the rectified logits as input and outputs a rectified segmentation mask with the help of Gumbel-Softmax operation. A contrastive loss based on the masked visual features and the text features of different classes is imposed, which makes the bias modeling and rectification process meaningful and effective. Extensive experiments on various benchmarks including PASCAL VOC, PASCAL Context, ADE20K, Cityscapes, and COCO Stuff demonstrate that our method performs favorably against previous state-of-the-arts. The implementation is available at: https://github.com/dogehhh/ReCLIP.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02566-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02566-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近的作品利用CLIP来执行具有挑战性的无监督语义分割任务,其中只有没有注释的图像可用。然而,我们观察到,当将CLIP应用于这样一个像素级的理解任务时,会出现意想不到的偏差(包括类别偏好偏差和空间偏好偏差)。以前的工作没有明确地建模偏差,这在很大程度上限制了分割性能。在本文中,我们提出显式建模和纠正CLIP中存在的偏见,以促进无监督语义分割任务。具体来说,我们设计了一个可学习的“参考”提示符来编码类偏好偏差,设计了一个位置嵌入在视觉转换器中的投影来编码空间偏好偏差。为了避免干扰,首先将两种偏差独立编码为不同的特征,即参考特征和位置特征。通过参考特征和位置特征之间的矩阵乘法,生成偏差logit映射以显式表示两种偏差。然后我们通过一个简单的元素减法来纠正CLIP的逻辑。为了使整流结果更平滑、更符合上下文,我们设计了一种以CLIP特征和整流逻辑为输入的掩码解码器,并借助Gumbel-Softmax运算输出整流分割掩码。基于被遮挡的视觉特征和不同类别的文本特征施加对比损失,使得偏差建模和校正过程有意义和有效。在包括PASCAL VOC、PASCAL Context、ADE20K、cityscape和COCO Stuff在内的各种基准测试上进行的大量实验表明,我们的方法比以前的最先进的方法表现得更好。实现可在:https://github.com/dogehhh/ReCLIP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ReCLIP++: Learn to Rectify the Bias of CLIP for Unsupervised Semantic Segmentation

Recent works utilize CLIP to perform the challenging unsupervised semantic segmentation task where only images without annotations are available. However, we observe that when adopting CLIP to such a pixel-level understanding task, unexpected bias (including class-preference bias and space-preference bias) occurs. Previous works don’t explicitly model the bias, which largely constrains the segmentation performance. In this paper, we propose to explicitly model and rectify the bias existing in CLIP to facilitate the unsupervised semantic segmentation task. Specifically, we design a learnable “Reference” prompt to encode class-preference bias and a projection of the positional embedding in the vision transformer to encode space-preference bias respectively. To avoid interference, two kinds of biases are firstly independently encoded into different features, i.e., the Reference feature and the positional feature. Via a matrix multiplication between the Reference feature and the positional feature, a bias logit map is generated to explicitly represent two kinds of biases. Then we rectify the logits of CLIP via a simple element-wise subtraction. To make the rectified results smoother and more contextual, we design a mask decoder which takes the feature of CLIP and the rectified logits as input and outputs a rectified segmentation mask with the help of Gumbel-Softmax operation. A contrastive loss based on the masked visual features and the text features of different classes is imposed, which makes the bias modeling and rectification process meaningful and effective. Extensive experiments on various benchmarks including PASCAL VOC, PASCAL Context, ADE20K, Cityscapes, and COCO Stuff demonstrate that our method performs favorably against previous state-of-the-arts. The implementation is available at: https://github.com/dogehhh/ReCLIP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信