EdgeSAM: SAM的即时循环蒸馏

IF 9.3 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chong Zhou, Xiangtai Li, Chen Change Loy, Bo Dai
{"title":"EdgeSAM: SAM的即时循环蒸馏","authors":"Chong Zhou, Xiangtai Li, Chen Change Loy, Bo Dai","doi":"10.1007/s11263-025-02562-9","DOIUrl":null,"url":null,"abstract":"<p>This paper presents EdgeSAM, an accelerated variant of the Segment Anything Model (SAM), optimized for efficient execution on edge devices with minimal compromise in performance. Our approach involves distilling the original ViT-based SAM image encoder into a purely CNN-based architecture, better suited for edge devices. We carefully benchmark various distillation strategies and demonstrate that task-agnostic encoder distillation fails to capture the full knowledge embodied in SAM.To overcome this bottleneck, we include both the prompt encoder and mask decoder in the distillation process, with box and point prompts in the loop, so that the distilled model can accurately capture the intricate dynamics between user input and mask generation. To mitigate dataset bias issues stemming from point prompt distillation, we incorporate a lightweight module within the encoder.As a result, EdgeSAM achieves a 37-fold speed increase compared to the original SAM, and it also outperforms MobileSAM/EfficientSAM, being over 7 times as fast when deployed on edge devices while enhancing the mIoUs on COCO and LVIS by 2.3/1.5 and 3.1/1.6, respectively. It is also the first SAM variant that can run at over 30 FPS on an iPhone 14. Code and demo are available here https://mmlab-ntu.github.io/project/edgesam/.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"28 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EdgeSAM: Prompt-In-the-Loop Distillation for SAM\",\"authors\":\"Chong Zhou, Xiangtai Li, Chen Change Loy, Bo Dai\",\"doi\":\"10.1007/s11263-025-02562-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents EdgeSAM, an accelerated variant of the Segment Anything Model (SAM), optimized for efficient execution on edge devices with minimal compromise in performance. Our approach involves distilling the original ViT-based SAM image encoder into a purely CNN-based architecture, better suited for edge devices. We carefully benchmark various distillation strategies and demonstrate that task-agnostic encoder distillation fails to capture the full knowledge embodied in SAM.To overcome this bottleneck, we include both the prompt encoder and mask decoder in the distillation process, with box and point prompts in the loop, so that the distilled model can accurately capture the intricate dynamics between user input and mask generation. To mitigate dataset bias issues stemming from point prompt distillation, we incorporate a lightweight module within the encoder.As a result, EdgeSAM achieves a 37-fold speed increase compared to the original SAM, and it also outperforms MobileSAM/EfficientSAM, being over 7 times as fast when deployed on edge devices while enhancing the mIoUs on COCO and LVIS by 2.3/1.5 and 3.1/1.6, respectively. It is also the first SAM variant that can run at over 30 FPS on an iPhone 14. Code and demo are available here https://mmlab-ntu.github.io/project/edgesam/.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02562-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02562-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了EdgeSAM,一种分段任意模型(SAM)的加速变体,针对边缘设备上的高效执行进行了优化,并且在性能上的妥协最小。我们的方法包括将原始的基于vit的SAM图像编码器提炼成纯粹的基于cnn的架构,更适合边缘设备。我们仔细地对各种蒸馏策略进行基准测试,并证明与任务无关的编码器蒸馏无法捕获SAM中包含的全部知识。为了克服这一瓶颈,我们在蒸馏过程中同时包含提示编码器和掩码解码器,并在循环中使用框和点提示,以便蒸馏模型能够准确捕获用户输入和掩码生成之间的复杂动态。为了减轻由点提示蒸馏产生的数据集偏差问题,我们在编码器中加入了一个轻量级模块。因此,EdgeSAM的速度比原来的SAM提高了37倍,并且也优于MobileSAM/EfficientSAM,在边缘设备上部署时速度提高了7倍以上,同时将COCO和LVIS的miu分别提高了2.3/1.5和3.1/1.6。这也是首款能够在iPhone 14上以超过30 FPS的速度运行的SAM变体。代码和演示可以在这里获得https://mmlab-ntu.github.io/project/edgesam/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EdgeSAM: Prompt-In-the-Loop Distillation for SAM

This paper presents EdgeSAM, an accelerated variant of the Segment Anything Model (SAM), optimized for efficient execution on edge devices with minimal compromise in performance. Our approach involves distilling the original ViT-based SAM image encoder into a purely CNN-based architecture, better suited for edge devices. We carefully benchmark various distillation strategies and demonstrate that task-agnostic encoder distillation fails to capture the full knowledge embodied in SAM.To overcome this bottleneck, we include both the prompt encoder and mask decoder in the distillation process, with box and point prompts in the loop, so that the distilled model can accurately capture the intricate dynamics between user input and mask generation. To mitigate dataset bias issues stemming from point prompt distillation, we incorporate a lightweight module within the encoder.As a result, EdgeSAM achieves a 37-fold speed increase compared to the original SAM, and it also outperforms MobileSAM/EfficientSAM, being over 7 times as fast when deployed on edge devices while enhancing the mIoUs on COCO and LVIS by 2.3/1.5 and 3.1/1.6, respectively. It is also the first SAM variant that can run at over 30 FPS on an iPhone 14. Code and demo are available here https://mmlab-ntu.github.io/project/edgesam/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信