{"title":"基于激光雷达-相机融合的矢量场远程操作预测显示","authors":"Gaurav Sharma, Jeff Calder, Rajesh Rajamani","doi":"10.1007/s11263-025-02550-z","DOIUrl":null,"url":null,"abstract":"<p>Teleoperation can enable human intervention to help handle instances of failure in autonomy thus allowing for much safer deployment of autonomous vehicle technology. Successful teleoperation requires recreating the environment around the remote vehicle using camera data received over wireless communication channels. This paper develops a new predictive display system to tackle the significant time delays encountered in receiving camera data over wireless networks. First, a new high gain observer is developed for estimating the position and orientation of the ego vehicle. The novel observer is shown to perform accurate state estimation using only GNSS and gyroscope sensor readings. A vector field method which fuses the delayed camera and Lidar data is then presented. This method uses sparse 3D points obtained from Lidar and transforms them using the state estimates from the high gain observer to generate a sparse vector field for the camera image. Polynomial based interpolation is then performed to obtain the vector field for the complete image which is then remapped to synthesize images for accurate predictive display. The method is evaluated on real-world experimental data from the nuScenes and KITTI datasets. The performance of the high gain observer is also evaluated and compared with that of the EKF. The synthesized images using the vector field based predictive display are compared with ground truth images using various image metrics and offer vastly improved performance compared to delayed images.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"162 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Display for Teleoperation Based on Vector Fields Using Lidar-Camera Fusion\",\"authors\":\"Gaurav Sharma, Jeff Calder, Rajesh Rajamani\",\"doi\":\"10.1007/s11263-025-02550-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Teleoperation can enable human intervention to help handle instances of failure in autonomy thus allowing for much safer deployment of autonomous vehicle technology. Successful teleoperation requires recreating the environment around the remote vehicle using camera data received over wireless communication channels. This paper develops a new predictive display system to tackle the significant time delays encountered in receiving camera data over wireless networks. First, a new high gain observer is developed for estimating the position and orientation of the ego vehicle. The novel observer is shown to perform accurate state estimation using only GNSS and gyroscope sensor readings. A vector field method which fuses the delayed camera and Lidar data is then presented. This method uses sparse 3D points obtained from Lidar and transforms them using the state estimates from the high gain observer to generate a sparse vector field for the camera image. Polynomial based interpolation is then performed to obtain the vector field for the complete image which is then remapped to synthesize images for accurate predictive display. The method is evaluated on real-world experimental data from the nuScenes and KITTI datasets. The performance of the high gain observer is also evaluated and compared with that of the EKF. The synthesized images using the vector field based predictive display are compared with ground truth images using various image metrics and offer vastly improved performance compared to delayed images.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"162 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02550-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02550-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Predictive Display for Teleoperation Based on Vector Fields Using Lidar-Camera Fusion
Teleoperation can enable human intervention to help handle instances of failure in autonomy thus allowing for much safer deployment of autonomous vehicle technology. Successful teleoperation requires recreating the environment around the remote vehicle using camera data received over wireless communication channels. This paper develops a new predictive display system to tackle the significant time delays encountered in receiving camera data over wireless networks. First, a new high gain observer is developed for estimating the position and orientation of the ego vehicle. The novel observer is shown to perform accurate state estimation using only GNSS and gyroscope sensor readings. A vector field method which fuses the delayed camera and Lidar data is then presented. This method uses sparse 3D points obtained from Lidar and transforms them using the state estimates from the high gain observer to generate a sparse vector field for the camera image. Polynomial based interpolation is then performed to obtain the vector field for the complete image which is then remapped to synthesize images for accurate predictive display. The method is evaluated on real-world experimental data from the nuScenes and KITTI datasets. The performance of the high gain observer is also evaluated and compared with that of the EKF. The synthesized images using the vector field based predictive display are compared with ground truth images using various image metrics and offer vastly improved performance compared to delayed images.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.