Ting Li, Zhenghong Yao, Yuxin Huang, Ran Li, Lu Zhang, Rucheng Chen, Weijia Gu
{"title":"慢性水接触聚苯乙烯微塑料诱导库普弗细胞极化失衡和肝脏脂质积累","authors":"Ting Li, Zhenghong Yao, Yuxin Huang, Ran Li, Lu Zhang, Rucheng Chen, Weijia Gu","doi":"10.1096/fj.202500910RR","DOIUrl":null,"url":null,"abstract":"<p>Microplastics (MPs), particles under 5 mm, are widespread environmental contaminants. Polystyrene (PS), used in many household items, degrades into polystyrene MPs (PS-MPs), which accumulate in the environment. Chronic exposure to waterborne PS-MPs was found to disrupt hepatic lipid metabolism in C57BL/6N mice through inflammatory Kupffer cell polarization and IL-17/NF-κB signaling pathways. While short-term PS-MPs exposure revealed preferential accumulation in the liver and testes, long-term exposure (9–12 weeks) induced significant increases in body fat percentage and hepatic lipid deposition independent of dietary changes. Mechanistically, chronic PS-MPs exposure promoted Kupffer cell polarization toward pro-inflammatory M1 phenotypes, accompanied by upregulated IL-17 expression and suppressed anti-inflammatory cytokines. Western blot analysis demonstrated concurrent elevation of lipid synthesis markers with reduced lipid oxidation and transport proteins. These findings established that PS-MPs accumulation drives hepatic steatosis through dual mechanisms of macrophage-mediated inflammation and impaired lipid homeostasis pathways.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 17","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://faseb.onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202500910RR","citationCount":"0","resultStr":"{\"title\":\"Chronic Waterborne Exposure to Polystyrene Microplastics Induces Kupffer Cell Polarization Imbalance and Hepatic Lipid Accumulation\",\"authors\":\"Ting Li, Zhenghong Yao, Yuxin Huang, Ran Li, Lu Zhang, Rucheng Chen, Weijia Gu\",\"doi\":\"10.1096/fj.202500910RR\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microplastics (MPs), particles under 5 mm, are widespread environmental contaminants. Polystyrene (PS), used in many household items, degrades into polystyrene MPs (PS-MPs), which accumulate in the environment. Chronic exposure to waterborne PS-MPs was found to disrupt hepatic lipid metabolism in C57BL/6N mice through inflammatory Kupffer cell polarization and IL-17/NF-κB signaling pathways. While short-term PS-MPs exposure revealed preferential accumulation in the liver and testes, long-term exposure (9–12 weeks) induced significant increases in body fat percentage and hepatic lipid deposition independent of dietary changes. Mechanistically, chronic PS-MPs exposure promoted Kupffer cell polarization toward pro-inflammatory M1 phenotypes, accompanied by upregulated IL-17 expression and suppressed anti-inflammatory cytokines. Western blot analysis demonstrated concurrent elevation of lipid synthesis markers with reduced lipid oxidation and transport proteins. These findings established that PS-MPs accumulation drives hepatic steatosis through dual mechanisms of macrophage-mediated inflammation and impaired lipid homeostasis pathways.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":\"39 17\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://faseb.onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202500910RR\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202500910RR\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202500910RR","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Chronic Waterborne Exposure to Polystyrene Microplastics Induces Kupffer Cell Polarization Imbalance and Hepatic Lipid Accumulation
Microplastics (MPs), particles under 5 mm, are widespread environmental contaminants. Polystyrene (PS), used in many household items, degrades into polystyrene MPs (PS-MPs), which accumulate in the environment. Chronic exposure to waterborne PS-MPs was found to disrupt hepatic lipid metabolism in C57BL/6N mice through inflammatory Kupffer cell polarization and IL-17/NF-κB signaling pathways. While short-term PS-MPs exposure revealed preferential accumulation in the liver and testes, long-term exposure (9–12 weeks) induced significant increases in body fat percentage and hepatic lipid deposition independent of dietary changes. Mechanistically, chronic PS-MPs exposure promoted Kupffer cell polarization toward pro-inflammatory M1 phenotypes, accompanied by upregulated IL-17 expression and suppressed anti-inflammatory cytokines. Western blot analysis demonstrated concurrent elevation of lipid synthesis markers with reduced lipid oxidation and transport proteins. These findings established that PS-MPs accumulation drives hepatic steatosis through dual mechanisms of macrophage-mediated inflammation and impaired lipid homeostasis pathways.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.