Pedro Vicente, Ana Meliciano, Cláudia Diniz, Artemis Charalambidou, Ana Paula Terrasso, Catarina Freitas, Andrea Ducci, Paula M. Alves, Martina Micheletti, António Roldão, Margarida Serra
{"title":"大规模生产hiPSC的小型生物反应器的工程特性","authors":"Pedro Vicente, Ana Meliciano, Cláudia Diniz, Artemis Charalambidou, Ana Paula Terrasso, Catarina Freitas, Andrea Ducci, Paula M. Alves, Martina Micheletti, António Roldão, Margarida Serra","doi":"10.1002/biot.70106","DOIUrl":null,"url":null,"abstract":"<p>Human induced pluripotent stem cells (hiPSC) have great potential for cell therapy applications. To meet the global demand for hiPSC-derived cell therapies, the implementation of scalable technologies, such as stirred-tank bioreactors (STB), is essential. However, the addition of physical cues, including shear stress, can impact cell viability and proliferation and requires precise tuning. In this work, we used an engineering characterization approach to estimate the impeller power number (0.5) and investigate the mixing and suspension dynamics in the first generation of small-scale (0.2 L) DASGIP bioreactors (DASGIP-STB). By keeping constant power input per volume (<i>P/V</i> = 4.6 W/m<sup>3</sup>) as a scale-up criteria, we successfully transferred a hiPSC expansion process to a 0.2 L single-use STB (BioBLU-STB) and scaled it up to a single-use 2 L STB (Univessel-STB) without compromising cell expansion, viability, and metabolism, as well as hiPSC quality attributes, including their pluripotent phenotype and differentiation potential.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/biot.70106","citationCount":"0","resultStr":"{\"title\":\"Engineering Characterization of Small-Scale Bioreactors for Large-Scale hiPSC Production\",\"authors\":\"Pedro Vicente, Ana Meliciano, Cláudia Diniz, Artemis Charalambidou, Ana Paula Terrasso, Catarina Freitas, Andrea Ducci, Paula M. Alves, Martina Micheletti, António Roldão, Margarida Serra\",\"doi\":\"10.1002/biot.70106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human induced pluripotent stem cells (hiPSC) have great potential for cell therapy applications. To meet the global demand for hiPSC-derived cell therapies, the implementation of scalable technologies, such as stirred-tank bioreactors (STB), is essential. However, the addition of physical cues, including shear stress, can impact cell viability and proliferation and requires precise tuning. In this work, we used an engineering characterization approach to estimate the impeller power number (0.5) and investigate the mixing and suspension dynamics in the first generation of small-scale (0.2 L) DASGIP bioreactors (DASGIP-STB). By keeping constant power input per volume (<i>P/V</i> = 4.6 W/m<sup>3</sup>) as a scale-up criteria, we successfully transferred a hiPSC expansion process to a 0.2 L single-use STB (BioBLU-STB) and scaled it up to a single-use 2 L STB (Univessel-STB) without compromising cell expansion, viability, and metabolism, as well as hiPSC quality attributes, including their pluripotent phenotype and differentiation potential.</p>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"20 9\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/biot.70106\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.70106\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.70106","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Engineering Characterization of Small-Scale Bioreactors for Large-Scale hiPSC Production
Human induced pluripotent stem cells (hiPSC) have great potential for cell therapy applications. To meet the global demand for hiPSC-derived cell therapies, the implementation of scalable technologies, such as stirred-tank bioreactors (STB), is essential. However, the addition of physical cues, including shear stress, can impact cell viability and proliferation and requires precise tuning. In this work, we used an engineering characterization approach to estimate the impeller power number (0.5) and investigate the mixing and suspension dynamics in the first generation of small-scale (0.2 L) DASGIP bioreactors (DASGIP-STB). By keeping constant power input per volume (P/V = 4.6 W/m3) as a scale-up criteria, we successfully transferred a hiPSC expansion process to a 0.2 L single-use STB (BioBLU-STB) and scaled it up to a single-use 2 L STB (Univessel-STB) without compromising cell expansion, viability, and metabolism, as well as hiPSC quality attributes, including their pluripotent phenotype and differentiation potential.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.