Trine S. Jensen, Marlene F. Laursen, Lea Schort, Agnieszka J. Banasik, Ralf Agger, Martin R. Jakobsen, Emil Kofod-Olsen
{"title":"STING和非坏死性mlkl介导的机制改善树突状细胞成熟和杀死癌细胞","authors":"Trine S. Jensen, Marlene F. Laursen, Lea Schort, Agnieszka J. Banasik, Ralf Agger, Martin R. Jakobsen, Emil Kofod-Olsen","doi":"10.1002/eji.70044","DOIUrl":null,"url":null,"abstract":"<p>Activation of the cGAS-STING pathway plays an important role in antitumor immunity through maturation of tumor-infiltrating DCs. DCs engulf extracellular DNA released by dying cancer cells, supporting activation of the cGAS-STING pathway and concomitant DC maturation. Extracellular DNA in the tumor microenvironment is primarily derived from cells undergoing uncontrolled necrosis or programmed inflammatory death, such as necroptosis, which can be induced when apoptosis pathways are inhibited. Here, we report that caspase inhibition primes activation of a RIPK1/3, MLKL, and STING signaling axis in DCs, resulting in maturation without the need for any further maturation stimuli such as LPS or TNF-α. Notably, these signaling events do not induce DC death, indicating a nonnecroptotic role of the RIPK1-RIPK3-MLKL pathway and novel crosstalk with the STING pathway. Caspase inhibition in DC/cancer cell co-cultures results in DC maturation, inducing TNF-α secretion, which delivers the co-signal to induce cancer cell necroptosis. In summary, we find a collaborative mechanism of the STING and necroptosis pathway in DC maturation, and that activation of the necroptosis pathway has opposite effects on cancer cells and DCs, proposing a possibility for new targets in cancer immunotherapy.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":"55 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.70044","citationCount":"0","resultStr":"{\"title\":\"STING and Nonnecroptotic MLKL-Mediated Mechanisms Improve Dendritic Cell Maturation and Killing of Cancer Cells\",\"authors\":\"Trine S. Jensen, Marlene F. Laursen, Lea Schort, Agnieszka J. Banasik, Ralf Agger, Martin R. Jakobsen, Emil Kofod-Olsen\",\"doi\":\"10.1002/eji.70044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Activation of the cGAS-STING pathway plays an important role in antitumor immunity through maturation of tumor-infiltrating DCs. DCs engulf extracellular DNA released by dying cancer cells, supporting activation of the cGAS-STING pathway and concomitant DC maturation. Extracellular DNA in the tumor microenvironment is primarily derived from cells undergoing uncontrolled necrosis or programmed inflammatory death, such as necroptosis, which can be induced when apoptosis pathways are inhibited. Here, we report that caspase inhibition primes activation of a RIPK1/3, MLKL, and STING signaling axis in DCs, resulting in maturation without the need for any further maturation stimuli such as LPS or TNF-α. Notably, these signaling events do not induce DC death, indicating a nonnecroptotic role of the RIPK1-RIPK3-MLKL pathway and novel crosstalk with the STING pathway. Caspase inhibition in DC/cancer cell co-cultures results in DC maturation, inducing TNF-α secretion, which delivers the co-signal to induce cancer cell necroptosis. In summary, we find a collaborative mechanism of the STING and necroptosis pathway in DC maturation, and that activation of the necroptosis pathway has opposite effects on cancer cells and DCs, proposing a possibility for new targets in cancer immunotherapy.</p>\",\"PeriodicalId\":165,\"journal\":{\"name\":\"European Journal of Immunology\",\"volume\":\"55 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.70044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eji.70044\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eji.70044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
STING and Nonnecroptotic MLKL-Mediated Mechanisms Improve Dendritic Cell Maturation and Killing of Cancer Cells
Activation of the cGAS-STING pathway plays an important role in antitumor immunity through maturation of tumor-infiltrating DCs. DCs engulf extracellular DNA released by dying cancer cells, supporting activation of the cGAS-STING pathway and concomitant DC maturation. Extracellular DNA in the tumor microenvironment is primarily derived from cells undergoing uncontrolled necrosis or programmed inflammatory death, such as necroptosis, which can be induced when apoptosis pathways are inhibited. Here, we report that caspase inhibition primes activation of a RIPK1/3, MLKL, and STING signaling axis in DCs, resulting in maturation without the need for any further maturation stimuli such as LPS or TNF-α. Notably, these signaling events do not induce DC death, indicating a nonnecroptotic role of the RIPK1-RIPK3-MLKL pathway and novel crosstalk with the STING pathway. Caspase inhibition in DC/cancer cell co-cultures results in DC maturation, inducing TNF-α secretion, which delivers the co-signal to induce cancer cell necroptosis. In summary, we find a collaborative mechanism of the STING and necroptosis pathway in DC maturation, and that activation of the necroptosis pathway has opposite effects on cancer cells and DCs, proposing a possibility for new targets in cancer immunotherapy.
期刊介绍:
The European Journal of Immunology (EJI) is an official journal of EFIS. Established in 1971, EJI continues to serve the needs of the global immunology community covering basic, translational and clinical research, ranging from adaptive and innate immunity through to vaccines and immunotherapy, cancer, autoimmunity, allergy and more. Mechanistic insights and thought-provoking immunological findings are of interest, as are studies using the latest omics technologies. We offer fast track review for competitive situations, including recently scooped papers, format free submission, transparent and fair peer review and more as detailed in our policies.