一种保护隐私的联邦量子卷积神经网络用于视网膜图像分类

IF 2.8 Q3 QUANTUM SCIENCE & TECHNOLOGY
Mahua Nandy Pal, Debashis De
{"title":"一种保护隐私的联邦量子卷积神经网络用于视网膜图像分类","authors":"Mahua Nandy Pal,&nbsp;Debashis De","doi":"10.1049/qtc2.70010","DOIUrl":null,"url":null,"abstract":"<p>Quantum machine learning (QML) provides the opportunity for the success of an automated medical diagnostic system due to the effective representation of the solution space by quantum entangled states and faster optimisation through quantum superposition. Preserving medical data privacy is crucial while implementing an intelligent and efficient medical service provider system. The federated machine learning model is not only rich in diversified model experiences but also helps to protect patient data privacy. This paper proposes a secure, intelligent Internet of Healthcare Things (IoHT) application with a federated quantum convolutional neural network (FedQCNN) to classify medically significant retinal image patches. Following the gradient descent algorithm, we executed the model optimisation and performed the global aggregation using the weighted average of the local models' parameters. The proposed system achieves an evaluation accuracy of 96.8% on E-Ophtha retinal image dataset. We suggest over-the-air distributed machine learning with wireless multiple access channels to significantly save the scaled-up radio resource requirements for massive connectivity to ultra dense IoT devices. The research emphasises the significant progress of federated quantum machine learning and its prospects in the coming decades.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"6 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.70010","citationCount":"0","resultStr":"{\"title\":\"FedQCNN: A Privacy-Preserving Federated Quantum Convolutional Neural Network for Retinal Image Classification\",\"authors\":\"Mahua Nandy Pal,&nbsp;Debashis De\",\"doi\":\"10.1049/qtc2.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum machine learning (QML) provides the opportunity for the success of an automated medical diagnostic system due to the effective representation of the solution space by quantum entangled states and faster optimisation through quantum superposition. Preserving medical data privacy is crucial while implementing an intelligent and efficient medical service provider system. The federated machine learning model is not only rich in diversified model experiences but also helps to protect patient data privacy. This paper proposes a secure, intelligent Internet of Healthcare Things (IoHT) application with a federated quantum convolutional neural network (FedQCNN) to classify medically significant retinal image patches. Following the gradient descent algorithm, we executed the model optimisation and performed the global aggregation using the weighted average of the local models' parameters. The proposed system achieves an evaluation accuracy of 96.8% on E-Ophtha retinal image dataset. We suggest over-the-air distributed machine learning with wireless multiple access channels to significantly save the scaled-up radio resource requirements for massive connectivity to ultra dense IoT devices. The research emphasises the significant progress of federated quantum machine learning and its prospects in the coming decades.</p>\",\"PeriodicalId\":100651,\"journal\":{\"name\":\"IET Quantum Communication\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.70010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Quantum Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/qtc2.70010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/qtc2.70010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

量子机器学习(QML)通过量子纠缠态有效地表示解空间和通过量子叠加更快地优化,为自动医疗诊断系统的成功提供了机会。在实现智能高效的医疗服务提供商系统时,保护医疗数据隐私至关重要。联邦机器学习模型不仅丰富了多样化的模型经验,而且有助于保护患者数据隐私。本文提出了一种安全、智能的医疗物联网(IoHT)应用,利用联邦量子卷积神经网络(FedQCNN)对医学上重要的视网膜图像斑块进行分类。根据梯度下降算法,我们执行模型优化,并使用局部模型参数的加权平均进行全局聚合。该系统在E-Ophtha视网膜图像数据集上的评价准确率达到96.8%。我们建议使用无线多访问通道的无线分布式机器学习,以显着节省与超密集物联网设备大规模连接的扩展无线电资源需求。该研究强调了联邦量子机器学习的重大进展及其在未来几十年的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

FedQCNN: A Privacy-Preserving Federated Quantum Convolutional Neural Network for Retinal Image Classification

FedQCNN: A Privacy-Preserving Federated Quantum Convolutional Neural Network for Retinal Image Classification

FedQCNN: A Privacy-Preserving Federated Quantum Convolutional Neural Network for Retinal Image Classification

FedQCNN: A Privacy-Preserving Federated Quantum Convolutional Neural Network for Retinal Image Classification

Quantum machine learning (QML) provides the opportunity for the success of an automated medical diagnostic system due to the effective representation of the solution space by quantum entangled states and faster optimisation through quantum superposition. Preserving medical data privacy is crucial while implementing an intelligent and efficient medical service provider system. The federated machine learning model is not only rich in diversified model experiences but also helps to protect patient data privacy. This paper proposes a secure, intelligent Internet of Healthcare Things (IoHT) application with a federated quantum convolutional neural network (FedQCNN) to classify medically significant retinal image patches. Following the gradient descent algorithm, we executed the model optimisation and performed the global aggregation using the weighted average of the local models' parameters. The proposed system achieves an evaluation accuracy of 96.8% on E-Ophtha retinal image dataset. We suggest over-the-air distributed machine learning with wireless multiple access channels to significantly save the scaled-up radio resource requirements for massive connectivity to ultra dense IoT devices. The research emphasises the significant progress of federated quantum machine learning and its prospects in the coming decades.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信