基于zx微积分的神经预测器量子结构搜索

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Shanchuan Li, Daisuke Tsukayama, Jun-ichi Shirakashi, Tetsuo Shibuya, Hiroshi Imai
{"title":"基于zx微积分的神经预测器量子结构搜索","authors":"Shanchuan Li,&nbsp;Daisuke Tsukayama,&nbsp;Jun-ichi Shirakashi,&nbsp;Tetsuo Shibuya,&nbsp;Hiroshi Imai","doi":"10.1140/epjqt/s40507-025-00410-w","DOIUrl":null,"url":null,"abstract":"<div><p>With the ongoing advances in noisy intermediate-scale quantum hardware, variational quantum algorithms have demonstrated significant potential in a range of quantum applications. However, obtaining high-performance, shallow-parameterized quantum circuits typically requires repeated optimization of the gate parameters over a large set of candidate circuits, resulting in prohibitively high evaluation costs. To address this challenge, this study proposes a novel predictor-based quantum architecture search (PQAS-ZX) method that leverages ZX-calculus. In this approach, a quantum circuit is first represented as a ZX diagram that supports multi-step equivalent simplifications at the diagram level. By applying these equivalence transformations, multiple circuit variants that share the same performance metric are generated, thereby significantly expanding the training dataset and enhancing the ability of the predictor to manage diverse circuit structures. ZX diagrams offer more flexible characterizations of multi-qubit entanglement and phase interactions, as well as higher-level equivalent transformations, compared with the state-of-the-art predictor-based quantum architecture search with graph measures (PQAS-GM). Numerical simulations of three variational quantum eigensolver tasks, namely the transverse-field Ising, Heisenberg, and BeH<sub>2</sub> molecular models, demonstrated that PQAS-ZX required only approximately 80.9%, 82.9%, and 76.1% of the queries required by PQAS-GM, respectively, to achieve the same probability of reaching the target ground-state energy. These results highlight the advantage of using ZX diagrams to identify high-quality circuits efficiently and alleviate the evaluation burden of quantum architecture searches.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00410-w","citationCount":"0","resultStr":"{\"title\":\"Quantum architecture search with neural predictor based on ZX-calculus\",\"authors\":\"Shanchuan Li,&nbsp;Daisuke Tsukayama,&nbsp;Jun-ichi Shirakashi,&nbsp;Tetsuo Shibuya,&nbsp;Hiroshi Imai\",\"doi\":\"10.1140/epjqt/s40507-025-00410-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the ongoing advances in noisy intermediate-scale quantum hardware, variational quantum algorithms have demonstrated significant potential in a range of quantum applications. However, obtaining high-performance, shallow-parameterized quantum circuits typically requires repeated optimization of the gate parameters over a large set of candidate circuits, resulting in prohibitively high evaluation costs. To address this challenge, this study proposes a novel predictor-based quantum architecture search (PQAS-ZX) method that leverages ZX-calculus. In this approach, a quantum circuit is first represented as a ZX diagram that supports multi-step equivalent simplifications at the diagram level. By applying these equivalence transformations, multiple circuit variants that share the same performance metric are generated, thereby significantly expanding the training dataset and enhancing the ability of the predictor to manage diverse circuit structures. ZX diagrams offer more flexible characterizations of multi-qubit entanglement and phase interactions, as well as higher-level equivalent transformations, compared with the state-of-the-art predictor-based quantum architecture search with graph measures (PQAS-GM). Numerical simulations of three variational quantum eigensolver tasks, namely the transverse-field Ising, Heisenberg, and BeH<sub>2</sub> molecular models, demonstrated that PQAS-ZX required only approximately 80.9%, 82.9%, and 76.1% of the queries required by PQAS-GM, respectively, to achieve the same probability of reaching the target ground-state energy. These results highlight the advantage of using ZX diagrams to identify high-quality circuits efficiently and alleviate the evaluation burden of quantum architecture searches.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00410-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00410-w\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00410-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

随着噪声中等规模量子硬件的不断发展,变分量子算法在一系列量子应用中显示出巨大的潜力。然而,获得高性能、浅参数化量子电路通常需要在大量候选电路上重复优化门参数,从而导致过高的评估成本。为了解决这一挑战,本研究提出了一种新的基于预测器的量子架构搜索(PQAS-ZX)方法,该方法利用了zx微积分。在这种方法中,量子电路首先被表示为支持图级多步等效简化的ZX图。通过应用这些等价变换,生成了共享相同性能度量的多个电路变体,从而显著扩展了训练数据集,增强了预测器管理不同电路结构的能力。与最先进的基于预测器的量子架构搜索与图测量(PQAS-GM)相比,ZX图提供了更灵活的多量子位纠缠和相位相互作用的表征,以及更高级别的等效转换。通过对横场Ising、Heisenberg和BeH2分子模型这三种变分量子特征求解器任务的数值模拟表明,PQAS-ZX只需要大约80.9%、82.9%和76.1%的查询量,就能达到相同的达到目标基态能量的概率。这些结果突出了使用ZX图有效识别高质量电路的优势,减轻了量子结构搜索的评估负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum architecture search with neural predictor based on ZX-calculus

With the ongoing advances in noisy intermediate-scale quantum hardware, variational quantum algorithms have demonstrated significant potential in a range of quantum applications. However, obtaining high-performance, shallow-parameterized quantum circuits typically requires repeated optimization of the gate parameters over a large set of candidate circuits, resulting in prohibitively high evaluation costs. To address this challenge, this study proposes a novel predictor-based quantum architecture search (PQAS-ZX) method that leverages ZX-calculus. In this approach, a quantum circuit is first represented as a ZX diagram that supports multi-step equivalent simplifications at the diagram level. By applying these equivalence transformations, multiple circuit variants that share the same performance metric are generated, thereby significantly expanding the training dataset and enhancing the ability of the predictor to manage diverse circuit structures. ZX diagrams offer more flexible characterizations of multi-qubit entanglement and phase interactions, as well as higher-level equivalent transformations, compared with the state-of-the-art predictor-based quantum architecture search with graph measures (PQAS-GM). Numerical simulations of three variational quantum eigensolver tasks, namely the transverse-field Ising, Heisenberg, and BeH2 molecular models, demonstrated that PQAS-ZX required only approximately 80.9%, 82.9%, and 76.1% of the queries required by PQAS-GM, respectively, to achieve the same probability of reaching the target ground-state energy. These results highlight the advantage of using ZX diagrams to identify high-quality circuits efficiently and alleviate the evaluation burden of quantum architecture searches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信