Ashutosh Sahu, N. Janardhan, Kiran Kumar Amireddy, Venkata Sushma Chinta, Lokeswar Patnaik, Lavish K. Singh
{"title":"粉末冶金法合成铝基非晶合金及复合材料的研究进展","authors":"Ashutosh Sahu, N. Janardhan, Kiran Kumar Amireddy, Venkata Sushma Chinta, Lokeswar Patnaik, Lavish K. Singh","doi":"10.1007/s11106-025-00493-1","DOIUrl":null,"url":null,"abstract":"<p>Aluminum-based amorphous alloys and composites, which have tensile and compressive strengths approximately two to three times higher than those of crystalline Al alloys and composites, are very attractive for various potential industrial applications. However, the good glass formers in Al-based alloy systems are usually found away from the eutectic points in the phase diagram and thus exhibit poor glass-forming ability. Consequently, the glass-forming compositions require cooling rates of 10<sup>4</sup>–10<sup>6</sup> K/s for synthesis via rapid quenching techniques, leading to dimensional restrictions in the micrometre to millimetre range. Synthesizing glassy powders and then consolidating them in the powder metallurgy (PM) route can improve the dimensions of these materials. Many researchers have made efforts to fabricate high-dimensional Al-based metallic glasses and composites with improved mechanical properties by using different PM routes. These research efforts require further review to enhance the development of Al-based glassy alloy systems for various potential applications. Researchers working on the development of high-specific-strength materials would benefit from such reviews. This review paper provides an in-depth examination of different techniques for fabricating Al-based metallic glasses and composites, their crystallization behavior, and mechanical properties. Suggestions for future research are provided to further enhance these materials.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"63 11-12","pages":"654 - 669"},"PeriodicalIF":0.6000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aluminum-Based Amorphous Alloys and Composites Synthesized Via Powder Metallurgy Route: A Review\",\"authors\":\"Ashutosh Sahu, N. Janardhan, Kiran Kumar Amireddy, Venkata Sushma Chinta, Lokeswar Patnaik, Lavish K. Singh\",\"doi\":\"10.1007/s11106-025-00493-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aluminum-based amorphous alloys and composites, which have tensile and compressive strengths approximately two to three times higher than those of crystalline Al alloys and composites, are very attractive for various potential industrial applications. However, the good glass formers in Al-based alloy systems are usually found away from the eutectic points in the phase diagram and thus exhibit poor glass-forming ability. Consequently, the glass-forming compositions require cooling rates of 10<sup>4</sup>–10<sup>6</sup> K/s for synthesis via rapid quenching techniques, leading to dimensional restrictions in the micrometre to millimetre range. Synthesizing glassy powders and then consolidating them in the powder metallurgy (PM) route can improve the dimensions of these materials. Many researchers have made efforts to fabricate high-dimensional Al-based metallic glasses and composites with improved mechanical properties by using different PM routes. These research efforts require further review to enhance the development of Al-based glassy alloy systems for various potential applications. Researchers working on the development of high-specific-strength materials would benefit from such reviews. This review paper provides an in-depth examination of different techniques for fabricating Al-based metallic glasses and composites, their crystallization behavior, and mechanical properties. Suggestions for future research are provided to further enhance these materials.</p>\",\"PeriodicalId\":742,\"journal\":{\"name\":\"Powder Metallurgy and Metal Ceramics\",\"volume\":\"63 11-12\",\"pages\":\"654 - 669\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy and Metal Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11106-025-00493-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-025-00493-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Aluminum-Based Amorphous Alloys and Composites Synthesized Via Powder Metallurgy Route: A Review
Aluminum-based amorphous alloys and composites, which have tensile and compressive strengths approximately two to three times higher than those of crystalline Al alloys and composites, are very attractive for various potential industrial applications. However, the good glass formers in Al-based alloy systems are usually found away from the eutectic points in the phase diagram and thus exhibit poor glass-forming ability. Consequently, the glass-forming compositions require cooling rates of 104–106 K/s for synthesis via rapid quenching techniques, leading to dimensional restrictions in the micrometre to millimetre range. Synthesizing glassy powders and then consolidating them in the powder metallurgy (PM) route can improve the dimensions of these materials. Many researchers have made efforts to fabricate high-dimensional Al-based metallic glasses and composites with improved mechanical properties by using different PM routes. These research efforts require further review to enhance the development of Al-based glassy alloy systems for various potential applications. Researchers working on the development of high-specific-strength materials would benefit from such reviews. This review paper provides an in-depth examination of different techniques for fabricating Al-based metallic glasses and composites, their crystallization behavior, and mechanical properties. Suggestions for future research are provided to further enhance these materials.
期刊介绍:
Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.