三维共形测地线的变分性

IF 1.6 3区 数学 Q1 MATHEMATICS
Boris Kruglikov, Vladimir S. Matveev, Wijnand Steneker
{"title":"三维共形测地线的变分性","authors":"Boris Kruglikov,&nbsp;Vladimir S. Matveev,&nbsp;Wijnand Steneker","doi":"10.1007/s13324-025-01124-z","DOIUrl":null,"url":null,"abstract":"<div><p>Conformal geodesics form an invariantly defined family of unparametrized curves in a conformal manifold generalizing unparametrized geodesics/paths of projective connections. The equation describing them is of third order, and it was an open problem whether they are given by an Euler–Lagrange equation. In dimension 3 (the simplest, but most important from the viewpoint of physical applications) we demonstrate that the equation for unparametrized conformal geodesics is variational.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01124-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Variationality of Conformal Geodesics in dimension 3\",\"authors\":\"Boris Kruglikov,&nbsp;Vladimir S. Matveev,&nbsp;Wijnand Steneker\",\"doi\":\"10.1007/s13324-025-01124-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conformal geodesics form an invariantly defined family of unparametrized curves in a conformal manifold generalizing unparametrized geodesics/paths of projective connections. The equation describing them is of third order, and it was an open problem whether they are given by an Euler–Lagrange equation. In dimension 3 (the simplest, but most important from the viewpoint of physical applications) we demonstrate that the equation for unparametrized conformal geodesics is variational.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-025-01124-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01124-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01124-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

保形测地线在保形流形中形成了一个不变定义的非参数化曲线族,它推广了非参数化测地线/射影连接的路径。描述它们的方程是三阶的,它们是否由欧拉-拉格朗日方程给出是一个开放的问题。在第三维(最简单的,但从物理应用的角度来看最重要的),我们证明了非参数化共形测地线的方程是变分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variationality of Conformal Geodesics in dimension 3

Conformal geodesics form an invariantly defined family of unparametrized curves in a conformal manifold generalizing unparametrized geodesics/paths of projective connections. The equation describing them is of third order, and it was an open problem whether they are given by an Euler–Lagrange equation. In dimension 3 (the simplest, but most important from the viewpoint of physical applications) we demonstrate that the equation for unparametrized conformal geodesics is variational.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信