{"title":"混合服装状态下终身人再认同的图像-文本-图像知识转移","authors":"Qizao Wang;Xuelin Qian;Bin Li;Yanwei Fu;Xiangyang Xue","doi":"10.1109/TIP.2025.3602745","DOIUrl":null,"url":null,"abstract":"With the continuous expansion of intelligent surveillance networks, lifelong person re-identification (LReID) has received widespread attention, pursuing the need of self-evolution across different domains. However, existing LReID studies accumulate knowledge with the assumption that people would not change their clothes. In this paper, we propose a more practical task, namely lifelong person re-identification with hybrid clothing states (LReID-Hybrid), which takes a series of cloth-changing and same-cloth domains into account during lifelong learning. To tackle the challenges of knowledge granularity mismatch and knowledge presentation mismatch in LReID-Hybrid, we take advantage of the consistency and generalization capabilities of the text space, and propose a novel framework, dubbed Teata, to effectively align, transfer, and accumulate knowledge in an “image-text-image” closed loop. Concretely, to achieve effective knowledge transfer, we design a Structured Semantic Prompt (SSP) learning to decompose the text prompt into several structured pairs to distill knowledge from the image space with a unified granularity of text description. Then, we introduce a Knowledge Adaptation and Projection (KAP) strategy, which tunes text knowledge via a slow-paced learner to adapt to different tasks without catastrophic forgetting. Extensive experiments demonstrate the superiority of our proposed Teata for LReID-Hybrid as well as on conventional LReID benchmarks over advanced methods.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"5584-5597"},"PeriodicalIF":13.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image-Text-Image Knowledge Transfer for Lifelong Person Re-Identification With Hybrid Clothing States\",\"authors\":\"Qizao Wang;Xuelin Qian;Bin Li;Yanwei Fu;Xiangyang Xue\",\"doi\":\"10.1109/TIP.2025.3602745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous expansion of intelligent surveillance networks, lifelong person re-identification (LReID) has received widespread attention, pursuing the need of self-evolution across different domains. However, existing LReID studies accumulate knowledge with the assumption that people would not change their clothes. In this paper, we propose a more practical task, namely lifelong person re-identification with hybrid clothing states (LReID-Hybrid), which takes a series of cloth-changing and same-cloth domains into account during lifelong learning. To tackle the challenges of knowledge granularity mismatch and knowledge presentation mismatch in LReID-Hybrid, we take advantage of the consistency and generalization capabilities of the text space, and propose a novel framework, dubbed Teata, to effectively align, transfer, and accumulate knowledge in an “image-text-image” closed loop. Concretely, to achieve effective knowledge transfer, we design a Structured Semantic Prompt (SSP) learning to decompose the text prompt into several structured pairs to distill knowledge from the image space with a unified granularity of text description. Then, we introduce a Knowledge Adaptation and Projection (KAP) strategy, which tunes text knowledge via a slow-paced learner to adapt to different tasks without catastrophic forgetting. Extensive experiments demonstrate the superiority of our proposed Teata for LReID-Hybrid as well as on conventional LReID benchmarks over advanced methods.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"5584-5597\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11146422/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11146422/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image-Text-Image Knowledge Transfer for Lifelong Person Re-Identification With Hybrid Clothing States
With the continuous expansion of intelligent surveillance networks, lifelong person re-identification (LReID) has received widespread attention, pursuing the need of self-evolution across different domains. However, existing LReID studies accumulate knowledge with the assumption that people would not change their clothes. In this paper, we propose a more practical task, namely lifelong person re-identification with hybrid clothing states (LReID-Hybrid), which takes a series of cloth-changing and same-cloth domains into account during lifelong learning. To tackle the challenges of knowledge granularity mismatch and knowledge presentation mismatch in LReID-Hybrid, we take advantage of the consistency and generalization capabilities of the text space, and propose a novel framework, dubbed Teata, to effectively align, transfer, and accumulate knowledge in an “image-text-image” closed loop. Concretely, to achieve effective knowledge transfer, we design a Structured Semantic Prompt (SSP) learning to decompose the text prompt into several structured pairs to distill knowledge from the image space with a unified granularity of text description. Then, we introduce a Knowledge Adaptation and Projection (KAP) strategy, which tunes text knowledge via a slow-paced learner to adapt to different tasks without catastrophic forgetting. Extensive experiments demonstrate the superiority of our proposed Teata for LReID-Hybrid as well as on conventional LReID benchmarks over advanced methods.