稀疏分散联邦学习

IF 5.8 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shan Sha;Shenglong Zhou;Lingchen Kong;Geoffrey Ye Li
{"title":"稀疏分散联邦学习","authors":"Shan Sha;Shenglong Zhou;Lingchen Kong;Geoffrey Ye Li","doi":"10.1109/TSP.2025.3603005","DOIUrl":null,"url":null,"abstract":"Decentralized Federated Learning (DFL) enables collaborative model training without a central server but faces challenges in efficiency, stability, and trustworthiness due to communication and computational limitations among distributed nodes. To address these critical issues, we introduce a sparsity constraint on the shared model, leading to Sparse DFL (SDFL), and propose a novel algorithm, CEPS. The sparsity constraint facilitates the use of one-bit compressive sensing to transmit one-bit information between partially selected neighbour nodes at specific steps, thereby significantly improving communication efficiency. Moreover, we integrate differential privacy into the algorithm to ensure privacy preservation and bolster the trustworthiness of the learning process. Furthermore, CEPS is underpinned by theoretical guarantees regarding both convergence and privacy. Numerical experiments validate the effectiveness of the proposed algorithm in improving communication and computation efficiency while maintaining a high level of trustworthiness.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"3406-3420"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Decentralized Federated Learning\",\"authors\":\"Shan Sha;Shenglong Zhou;Lingchen Kong;Geoffrey Ye Li\",\"doi\":\"10.1109/TSP.2025.3603005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decentralized Federated Learning (DFL) enables collaborative model training without a central server but faces challenges in efficiency, stability, and trustworthiness due to communication and computational limitations among distributed nodes. To address these critical issues, we introduce a sparsity constraint on the shared model, leading to Sparse DFL (SDFL), and propose a novel algorithm, CEPS. The sparsity constraint facilitates the use of one-bit compressive sensing to transmit one-bit information between partially selected neighbour nodes at specific steps, thereby significantly improving communication efficiency. Moreover, we integrate differential privacy into the algorithm to ensure privacy preservation and bolster the trustworthiness of the learning process. Furthermore, CEPS is underpinned by theoretical guarantees regarding both convergence and privacy. Numerical experiments validate the effectiveness of the proposed algorithm in improving communication and computation efficiency while maintaining a high level of trustworthiness.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"3406-3420\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11145909/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11145909/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

分散式联邦学习(DFL)可以在没有中央服务器的情况下进行协作模型训练,但由于分布式节点之间的通信和计算限制,它在效率、稳定性和可信度方面面临挑战。为了解决这些关键问题,我们在共享模型上引入了稀疏性约束,导致了稀疏DFL (SDFL),并提出了一种新的算法cceps。稀疏性约束有利于利用1位压缩感知在部分选择的相邻节点之间按特定步骤传输1位信息,从而显著提高通信效率。此外,我们将差分隐私集成到算法中,以确保隐私保护并增强学习过程的可信度。此外,cceps的基础是关于收敛和隐私的理论保证。数值实验验证了该算法在提高通信和计算效率的同时保持了较高的可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Decentralized Federated Learning
Decentralized Federated Learning (DFL) enables collaborative model training without a central server but faces challenges in efficiency, stability, and trustworthiness due to communication and computational limitations among distributed nodes. To address these critical issues, we introduce a sparsity constraint on the shared model, leading to Sparse DFL (SDFL), and propose a novel algorithm, CEPS. The sparsity constraint facilitates the use of one-bit compressive sensing to transmit one-bit information between partially selected neighbour nodes at specific steps, thereby significantly improving communication efficiency. Moreover, we integrate differential privacy into the algorithm to ensure privacy preservation and bolster the trustworthiness of the learning process. Furthermore, CEPS is underpinned by theoretical guarantees regarding both convergence and privacy. Numerical experiments validate the effectiveness of the proposed algorithm in improving communication and computation efficiency while maintaining a high level of trustworthiness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信