{"title":"用荧光寿命成像显微镜测量DNA断裂周围修复点的高分子拥挤","authors":"Svitlana M. Levchenko, Jurek W. Dobrucki","doi":"10.1096/fj.202501727R","DOIUrl":null,"url":null,"abstract":"<p>The density of mammalian cells is determined primarily by the protein content. Local concentration of proteins in a cell is tightly controlled and varies between the cytoplasm, nucleoplasm, and nucleoli. We demonstrate that repair foci that are formed in response to DNA breaks are much more densely packed with proteins than the surrounding nucleoplasm. Using fluorescence lifetime imaging (FLIM), we demonstrated that the local concentration of all proteins (i.e., the residing and recruited ones) in double- and single-strand DNA repair foci can be even 2.2 times higher than that in the surrounding nucleoplasm, which brings them close to the achievable maximum concentration. The highest protein density is found in the center of a repair focus and gradually decreases with distance from the DNA lesion. We hypothesize that a microenvironment characterized by such a high protein concentration may facilitate the formation of protein condensates, resulting in the stabilization of repair complexes.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 17","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://faseb.onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202501727R","citationCount":"0","resultStr":"{\"title\":\"High Molecular Crowding in Repair Foci Surrounding DNA Breaks, Measured by Fluorescence Lifetime Imaging Microscopy\",\"authors\":\"Svitlana M. Levchenko, Jurek W. Dobrucki\",\"doi\":\"10.1096/fj.202501727R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The density of mammalian cells is determined primarily by the protein content. Local concentration of proteins in a cell is tightly controlled and varies between the cytoplasm, nucleoplasm, and nucleoli. We demonstrate that repair foci that are formed in response to DNA breaks are much more densely packed with proteins than the surrounding nucleoplasm. Using fluorescence lifetime imaging (FLIM), we demonstrated that the local concentration of all proteins (i.e., the residing and recruited ones) in double- and single-strand DNA repair foci can be even 2.2 times higher than that in the surrounding nucleoplasm, which brings them close to the achievable maximum concentration. The highest protein density is found in the center of a repair focus and gradually decreases with distance from the DNA lesion. We hypothesize that a microenvironment characterized by such a high protein concentration may facilitate the formation of protein condensates, resulting in the stabilization of repair complexes.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":\"39 17\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://faseb.onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202501727R\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202501727R\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202501727R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
High Molecular Crowding in Repair Foci Surrounding DNA Breaks, Measured by Fluorescence Lifetime Imaging Microscopy
The density of mammalian cells is determined primarily by the protein content. Local concentration of proteins in a cell is tightly controlled and varies between the cytoplasm, nucleoplasm, and nucleoli. We demonstrate that repair foci that are formed in response to DNA breaks are much more densely packed with proteins than the surrounding nucleoplasm. Using fluorescence lifetime imaging (FLIM), we demonstrated that the local concentration of all proteins (i.e., the residing and recruited ones) in double- and single-strand DNA repair foci can be even 2.2 times higher than that in the surrounding nucleoplasm, which brings them close to the achievable maximum concentration. The highest protein density is found in the center of a repair focus and gradually decreases with distance from the DNA lesion. We hypothesize that a microenvironment characterized by such a high protein concentration may facilitate the formation of protein condensates, resulting in the stabilization of repair complexes.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.