紫外诱变通过代谢重编程促进Schizochytrium sp. DHA生物合成

IF 3.1 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Jing Wen, Lingling Huang, Danping Wang, Guoqiang Fan, Xiaojing Yang
{"title":"紫外诱变通过代谢重编程促进Schizochytrium sp. DHA生物合成","authors":"Jing Wen,&nbsp;Lingling Huang,&nbsp;Danping Wang,&nbsp;Guoqiang Fan,&nbsp;Xiaojing Yang","doi":"10.1002/biot.70107","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p><i>Schizochytrium</i> sp., a marine alga prized for docosahexaenoic acid (DHA), was subjected to UV mutagenesis to boost industrial yields. The stable mutant UV1-3 achieved 5.01 g/L DHA—40.34% higher than wild-type S31. Transcriptomic and metabolomic analyses demonstrated that UV1-3 promotes docosahexaenoic acid (DHA) biosynthesis through coordinated metabolic regulation. Downregulation of key fatty acid synthase (FAS) pathway genes (<i>ACSL</i>, <i>SLC27A2</i>, <i>FabI</i>) reduced substrate competition for DHA precursors. Concurrently, RT-qPCR confirmed the upregulation of core polyketide synthase (PKS) pathway genes (<i>orfA</i>, <i>orfB</i>, <i>orfC</i>), directly enhancing DHA production. Furthermore, suppressed oxidative phosphorylation (evidenced by <i>COX</i> downregulation) and redirected carbon/nitrogen flux—achieved through diminished tricarboxylic acid (TCA) cycle activity (via downregulation of <i>HAL</i> and <i>proC</i>)—collectively favored DHA accumulation. These findings establish UV1-3 as a high-yielding industrial strain for DHA production and provide fundamental insights into metabolic flux regulation in <i>Schizochytrium</i> sp. These insights advance scalable, cost-effective microbial DHA production and deepen understanding of algal biosynthesis mechanisms, supporting sustainable omega-3 sourcing strategies.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UV Mutagenesis Enhances DHA Biosynthesis in Schizochytrium sp. via Metabolic Reprogramming\",\"authors\":\"Jing Wen,&nbsp;Lingling Huang,&nbsp;Danping Wang,&nbsp;Guoqiang Fan,&nbsp;Xiaojing Yang\",\"doi\":\"10.1002/biot.70107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p><i>Schizochytrium</i> sp., a marine alga prized for docosahexaenoic acid (DHA), was subjected to UV mutagenesis to boost industrial yields. The stable mutant UV1-3 achieved 5.01 g/L DHA—40.34% higher than wild-type S31. Transcriptomic and metabolomic analyses demonstrated that UV1-3 promotes docosahexaenoic acid (DHA) biosynthesis through coordinated metabolic regulation. Downregulation of key fatty acid synthase (FAS) pathway genes (<i>ACSL</i>, <i>SLC27A2</i>, <i>FabI</i>) reduced substrate competition for DHA precursors. Concurrently, RT-qPCR confirmed the upregulation of core polyketide synthase (PKS) pathway genes (<i>orfA</i>, <i>orfB</i>, <i>orfC</i>), directly enhancing DHA production. Furthermore, suppressed oxidative phosphorylation (evidenced by <i>COX</i> downregulation) and redirected carbon/nitrogen flux—achieved through diminished tricarboxylic acid (TCA) cycle activity (via downregulation of <i>HAL</i> and <i>proC</i>)—collectively favored DHA accumulation. These findings establish UV1-3 as a high-yielding industrial strain for DHA production and provide fundamental insights into metabolic flux regulation in <i>Schizochytrium</i> sp. These insights advance scalable, cost-effective microbial DHA production and deepen understanding of algal biosynthesis mechanisms, supporting sustainable omega-3 sourcing strategies.</p>\\n </div>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"20 9\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.70107\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.70107","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

Schizochytrium sp.是一种富含二十二碳六烯酸(DHA)的海藻,为了提高工业产量,对其进行了紫外线诱变。稳定突变体UV1-3的dha含量比野生型S31高出5.01 g/L - 40.34%。转录组学和代谢组学分析表明,UV1-3通过协调代谢调节促进二十二碳六烯酸(DHA)的生物合成。关键脂肪酸合成酶(FAS)途径基因(ACSL, SLC27A2, FabI)的下调减少了对DHA前体的底物竞争。同时,RT-qPCR证实了PKS核心通路基因(orfA、orfB、orfC)的上调,直接促进了DHA的生成。此外,氧化磷酸化的抑制(通过COX下调证明)和碳/氮通量的重定向——通过降低三羧酸(TCA)循环活性(通过HAL和proC的下调)实现——共同有利于DHA的积累。这些发现确立了UV1-3作为DHA生产的高产工业菌株,并为Schizochytrium sp.的代谢通量调节提供了基本见解。这些见解促进了可扩展的、具有成本效益的微生物DHA生产,加深了对藻类生物合成机制的理解,支持可持续的omega-3采购策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

UV Mutagenesis Enhances DHA Biosynthesis in Schizochytrium sp. via Metabolic Reprogramming

UV Mutagenesis Enhances DHA Biosynthesis in Schizochytrium sp. via Metabolic Reprogramming

UV Mutagenesis Enhances DHA Biosynthesis in Schizochytrium sp. via Metabolic Reprogramming

UV Mutagenesis Enhances DHA Biosynthesis in Schizochytrium sp. via Metabolic Reprogramming

UV Mutagenesis Enhances DHA Biosynthesis in Schizochytrium sp. via Metabolic Reprogramming

Schizochytrium sp., a marine alga prized for docosahexaenoic acid (DHA), was subjected to UV mutagenesis to boost industrial yields. The stable mutant UV1-3 achieved 5.01 g/L DHA—40.34% higher than wild-type S31. Transcriptomic and metabolomic analyses demonstrated that UV1-3 promotes docosahexaenoic acid (DHA) biosynthesis through coordinated metabolic regulation. Downregulation of key fatty acid synthase (FAS) pathway genes (ACSL, SLC27A2, FabI) reduced substrate competition for DHA precursors. Concurrently, RT-qPCR confirmed the upregulation of core polyketide synthase (PKS) pathway genes (orfA, orfB, orfC), directly enhancing DHA production. Furthermore, suppressed oxidative phosphorylation (evidenced by COX downregulation) and redirected carbon/nitrogen flux—achieved through diminished tricarboxylic acid (TCA) cycle activity (via downregulation of HAL and proC)—collectively favored DHA accumulation. These findings establish UV1-3 as a high-yielding industrial strain for DHA production and provide fundamental insights into metabolic flux regulation in Schizochytrium sp. These insights advance scalable, cost-effective microbial DHA production and deepen understanding of algal biosynthesis mechanisms, supporting sustainable omega-3 sourcing strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信