{"title":"雷公藤甲素通过调节炎症和分化途径减轻创伤性异位骨化:对生化毒理学的影响","authors":"Zuo-Hua Li, Zong-Huan Li, Zheng Wang, Xiang Jiang, Ai-Xi Yu","doi":"10.1002/jbt.70482","DOIUrl":null,"url":null,"abstract":"<p>Traumatic heterotopic ossification (THO) is a pathological process characterized by ectopic bone formation in soft tissues following trauma or surgical interventions, leading to pain, swelling, and restricted mobility. Current therapeutic strategies remain limited, with surgical excision often associated with recurrence and complications. Triptolide (TP), a diterpenoid triepoxide derived from <i>Tripterygium wilfordii</i>, has potent anti-inflammatory and immunomodulatory effects, making it a promising candidate for THO treatment. This study explored the molecular mechanisms underlying the therapeutic potential of TP in THO, focusing on its effects on inflammatory and differentiation pathways. Using in vitro models with mouse tendon stem/progenitor cells (TSPCs) and RAW264.7 macrophages, as well as an in vivo mouse model of THO, we demonstrated that TP significantly inhibits key signalling pathways involved in THO pathogenesis, including the NF-κB, TGF-β-Smad, and Notch pathways. TP reduces the levels of Pro-inflammatory cytokines (IL-1β and TNF-α) and suppresses the osteogenic and chondrogenic differentiation of mesenchymal stem cells, which are critical processes in THO development. Moreover, compared with the commonly used anti-inflammatory drug indomethacin, TP markedly reduces ectopic bone formation in vivo, exhibiting superior efficacy. These findings highlight the potential of TP as a novel therapeutic agent for THO, providing new insights into its biochemical and molecular effects relevant to toxicology and inflammation regulation.</p>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbt.70482","citationCount":"0","resultStr":"{\"title\":\"Triptolide Attenuates Traumatic Heterotopic Ossification via Modulation of Inflammatory and Differentiation Pathways: Implications for Biochemical Toxicology\",\"authors\":\"Zuo-Hua Li, Zong-Huan Li, Zheng Wang, Xiang Jiang, Ai-Xi Yu\",\"doi\":\"10.1002/jbt.70482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traumatic heterotopic ossification (THO) is a pathological process characterized by ectopic bone formation in soft tissues following trauma or surgical interventions, leading to pain, swelling, and restricted mobility. Current therapeutic strategies remain limited, with surgical excision often associated with recurrence and complications. Triptolide (TP), a diterpenoid triepoxide derived from <i>Tripterygium wilfordii</i>, has potent anti-inflammatory and immunomodulatory effects, making it a promising candidate for THO treatment. This study explored the molecular mechanisms underlying the therapeutic potential of TP in THO, focusing on its effects on inflammatory and differentiation pathways. Using in vitro models with mouse tendon stem/progenitor cells (TSPCs) and RAW264.7 macrophages, as well as an in vivo mouse model of THO, we demonstrated that TP significantly inhibits key signalling pathways involved in THO pathogenesis, including the NF-κB, TGF-β-Smad, and Notch pathways. TP reduces the levels of Pro-inflammatory cytokines (IL-1β and TNF-α) and suppresses the osteogenic and chondrogenic differentiation of mesenchymal stem cells, which are critical processes in THO development. Moreover, compared with the commonly used anti-inflammatory drug indomethacin, TP markedly reduces ectopic bone formation in vivo, exhibiting superior efficacy. These findings highlight the potential of TP as a novel therapeutic agent for THO, providing new insights into its biochemical and molecular effects relevant to toxicology and inflammation regulation.</p>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbt.70482\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70482\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70482","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Triptolide Attenuates Traumatic Heterotopic Ossification via Modulation of Inflammatory and Differentiation Pathways: Implications for Biochemical Toxicology
Traumatic heterotopic ossification (THO) is a pathological process characterized by ectopic bone formation in soft tissues following trauma or surgical interventions, leading to pain, swelling, and restricted mobility. Current therapeutic strategies remain limited, with surgical excision often associated with recurrence and complications. Triptolide (TP), a diterpenoid triepoxide derived from Tripterygium wilfordii, has potent anti-inflammatory and immunomodulatory effects, making it a promising candidate for THO treatment. This study explored the molecular mechanisms underlying the therapeutic potential of TP in THO, focusing on its effects on inflammatory and differentiation pathways. Using in vitro models with mouse tendon stem/progenitor cells (TSPCs) and RAW264.7 macrophages, as well as an in vivo mouse model of THO, we demonstrated that TP significantly inhibits key signalling pathways involved in THO pathogenesis, including the NF-κB, TGF-β-Smad, and Notch pathways. TP reduces the levels of Pro-inflammatory cytokines (IL-1β and TNF-α) and suppresses the osteogenic and chondrogenic differentiation of mesenchymal stem cells, which are critical processes in THO development. Moreover, compared with the commonly used anti-inflammatory drug indomethacin, TP markedly reduces ectopic bone formation in vivo, exhibiting superior efficacy. These findings highlight the potential of TP as a novel therapeutic agent for THO, providing new insights into its biochemical and molecular effects relevant to toxicology and inflammation regulation.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.