稀土掺杂AlXO 2 delafoses在能源应用中的多功能性质

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
N. M. A. Hadia, Meshal Alzaid, M. F. Hasaneen, W. S. Mohamed, Muhammad Irfan, Emad M. Ahmed, Hesham M. H. Zakaly
{"title":"稀土掺杂AlXO 2 delafoses在能源应用中的多功能性质","authors":"N. M. A. Hadia,&nbsp;Meshal Alzaid,&nbsp;M. F. Hasaneen,&nbsp;W. S. Mohamed,&nbsp;Muhammad Irfan,&nbsp;Emad M. Ahmed,&nbsp;Hesham M. H. Zakaly","doi":"10.1007/s13538-025-01887-7","DOIUrl":null,"url":null,"abstract":"<div><p>Cu-based delafossite compounds AlXO₂ (X = Cu, Eu, Er) have emerged as technologically important materials for optoelectronic applications due to their unique combination of p-type conductivity and tunable electronic properties. Our comprehensive investigation reveals that these materials exhibit small direct band gaps ranging from 1.2 to 1.8 eV, ideal for solar energy conversion. First-principles calculations demonstrate strong p-d hybridization, characterized by exchange constants N₀β = − 0.19, − 0.12, − 0.14 and N₀α = 0.16, 0.24, 0.31 for Cu, Eu, and Er variants, respectively, indicating dominant exchange field contributions to their magnetic behavior. Optical property analysis in the 0–14 eV range shows significant anisotropy in absorption coefficients and dielectric functions, with notable birefringence effects. Remarkably, these materials demonstrate hydrogen storage capacities of 4.5–5.48 wt%, while thermoelectric calculations predict a figure of merit (ZT) of 0.55 at 600 K. The synergistic combination of favorable optoelectronic properties, magnetic tunability, and energy storage capabilities positions these delafossites as promising candidates for next-generation photovoltaic, spintronic, and energy storage applications. These findings provide fundamental insights into structure–property relationships in ternary oxides while demonstrating their potential for multifunctional device applications.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"55 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Properties of Rare Earth Doped AlXO₂ Delafossites for Energy Applications\",\"authors\":\"N. M. A. Hadia,&nbsp;Meshal Alzaid,&nbsp;M. F. Hasaneen,&nbsp;W. S. Mohamed,&nbsp;Muhammad Irfan,&nbsp;Emad M. Ahmed,&nbsp;Hesham M. H. Zakaly\",\"doi\":\"10.1007/s13538-025-01887-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cu-based delafossite compounds AlXO₂ (X = Cu, Eu, Er) have emerged as technologically important materials for optoelectronic applications due to their unique combination of p-type conductivity and tunable electronic properties. Our comprehensive investigation reveals that these materials exhibit small direct band gaps ranging from 1.2 to 1.8 eV, ideal for solar energy conversion. First-principles calculations demonstrate strong p-d hybridization, characterized by exchange constants N₀β = − 0.19, − 0.12, − 0.14 and N₀α = 0.16, 0.24, 0.31 for Cu, Eu, and Er variants, respectively, indicating dominant exchange field contributions to their magnetic behavior. Optical property analysis in the 0–14 eV range shows significant anisotropy in absorption coefficients and dielectric functions, with notable birefringence effects. Remarkably, these materials demonstrate hydrogen storage capacities of 4.5–5.48 wt%, while thermoelectric calculations predict a figure of merit (ZT) of 0.55 at 600 K. The synergistic combination of favorable optoelectronic properties, magnetic tunability, and energy storage capabilities positions these delafossites as promising candidates for next-generation photovoltaic, spintronic, and energy storage applications. These findings provide fundamental insights into structure–property relationships in ternary oxides while demonstrating their potential for multifunctional device applications.</p></div>\",\"PeriodicalId\":499,\"journal\":{\"name\":\"Brazilian Journal of Physics\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13538-025-01887-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-025-01887-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Cu基delafosite化合物AlXO₂(X = Cu, Eu, Er)由于其独特的p型电导率和可调谐电子特性的组合,已成为光电子应用技术上重要的材料。我们的综合研究表明,这些材料具有1.2至1.8 eV的小直接带隙,是太阳能转换的理想材料。第一性原理计算表明,Cu、Eu和Er的交换常数N 0 β分别为- 0.19、- 0.12、- 0.14和N 0 α = 0.16、0.24、0.31,表明交换场对它们的磁性行为起主导作用。在0 ~ 14 eV范围内的光学特性分析表明,吸收系数和介电函数具有显著的各向异性,双折射效应显著。值得注意的是,这些材料的储氢容量为4.5-5.48 wt%,而热电计算预测600 K时的性能值(ZT)为0.55。良好的光电特性、磁性可调性和能量存储能力的协同组合使这些delafosites成为下一代光伏、自旋电子和能量存储应用的有前途的候选者。这些发现为三元氧化物的结构-性质关系提供了基本的见解,同时展示了它们在多功能器件应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multifunctional Properties of Rare Earth Doped AlXO₂ Delafossites for Energy Applications

Multifunctional Properties of Rare Earth Doped AlXO₂ Delafossites for Energy Applications

Multifunctional Properties of Rare Earth Doped AlXO₂ Delafossites for Energy Applications

Cu-based delafossite compounds AlXO₂ (X = Cu, Eu, Er) have emerged as technologically important materials for optoelectronic applications due to their unique combination of p-type conductivity and tunable electronic properties. Our comprehensive investigation reveals that these materials exhibit small direct band gaps ranging from 1.2 to 1.8 eV, ideal for solar energy conversion. First-principles calculations demonstrate strong p-d hybridization, characterized by exchange constants N₀β = − 0.19, − 0.12, − 0.14 and N₀α = 0.16, 0.24, 0.31 for Cu, Eu, and Er variants, respectively, indicating dominant exchange field contributions to their magnetic behavior. Optical property analysis in the 0–14 eV range shows significant anisotropy in absorption coefficients and dielectric functions, with notable birefringence effects. Remarkably, these materials demonstrate hydrogen storage capacities of 4.5–5.48 wt%, while thermoelectric calculations predict a figure of merit (ZT) of 0.55 at 600 K. The synergistic combination of favorable optoelectronic properties, magnetic tunability, and energy storage capabilities positions these delafossites as promising candidates for next-generation photovoltaic, spintronic, and energy storage applications. These findings provide fundamental insights into structure–property relationships in ternary oxides while demonstrating their potential for multifunctional device applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brazilian Journal of Physics
Brazilian Journal of Physics 物理-物理:综合
CiteScore
2.50
自引率
6.20%
发文量
189
审稿时长
6.0 months
期刊介绍: The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信