Haoyu Wang , Yang Liu , Zijun Li , Yu Zhang , Wenjing Gong , Tao Jiang , Ting Bi , Jiaxi Zhou
{"title":"移动网络中多路径QUIC的动态拥塞控制算法","authors":"Haoyu Wang , Yang Liu , Zijun Li , Yu Zhang , Wenjing Gong , Tao Jiang , Ting Bi , Jiaxi Zhou","doi":"10.1016/j.dcan.2024.11.017","DOIUrl":null,"url":null,"abstract":"<div><div>High-quality services in today's mobile networks require stable delivery of bandwidth-intensive network content. Multipath QUIC (MPQUIC), as a multipath protocol that extends QUIC, can utilize multiple paths to support stable and efficient transmission. The standard coupled congestion control algorithm in MPQUIC synchronizes these paths to manage congestion, meeting fairness requirements and improving transmission efficiency. However, current algorithms' Congestion Window (CWND) reduction approach significantly decreases CWND upon packet loss, which lowers effective throughput, regardless of the congestion origin. Furthermore, the uncoupled Slow-Start (SS) in MPQUIC leads to independent exponential CWND growth on each path, potentially causing buffer overflow. To address these issues, we propose the CC-OLIA, which incorporates Packet Loss Classifcation (PLC) and Coupled Slow-Start (CSS). The PLC distinguishes between congestion-induced and random packet losses, adjusting CWND reduction accordingly to maintain throughput. Concurrently, the CSS module coordinates CWND growth during the SS, preventing abrupt increases. Implementation on MININET shows that CC-OLIA not only maintains fair performance but also enhances transmission efficiency across diverse network conditions.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1181-1191"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CC-OLIA: A dynamic congestion control algorithm for multipath QUIC in mobile networks\",\"authors\":\"Haoyu Wang , Yang Liu , Zijun Li , Yu Zhang , Wenjing Gong , Tao Jiang , Ting Bi , Jiaxi Zhou\",\"doi\":\"10.1016/j.dcan.2024.11.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-quality services in today's mobile networks require stable delivery of bandwidth-intensive network content. Multipath QUIC (MPQUIC), as a multipath protocol that extends QUIC, can utilize multiple paths to support stable and efficient transmission. The standard coupled congestion control algorithm in MPQUIC synchronizes these paths to manage congestion, meeting fairness requirements and improving transmission efficiency. However, current algorithms' Congestion Window (CWND) reduction approach significantly decreases CWND upon packet loss, which lowers effective throughput, regardless of the congestion origin. Furthermore, the uncoupled Slow-Start (SS) in MPQUIC leads to independent exponential CWND growth on each path, potentially causing buffer overflow. To address these issues, we propose the CC-OLIA, which incorporates Packet Loss Classifcation (PLC) and Coupled Slow-Start (CSS). The PLC distinguishes between congestion-induced and random packet losses, adjusting CWND reduction accordingly to maintain throughput. Concurrently, the CSS module coordinates CWND growth during the SS, preventing abrupt increases. Implementation on MININET shows that CC-OLIA not only maintains fair performance but also enhances transmission efficiency across diverse network conditions.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 4\",\"pages\":\"Pages 1181-1191\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864824001640\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824001640","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
CC-OLIA: A dynamic congestion control algorithm for multipath QUIC in mobile networks
High-quality services in today's mobile networks require stable delivery of bandwidth-intensive network content. Multipath QUIC (MPQUIC), as a multipath protocol that extends QUIC, can utilize multiple paths to support stable and efficient transmission. The standard coupled congestion control algorithm in MPQUIC synchronizes these paths to manage congestion, meeting fairness requirements and improving transmission efficiency. However, current algorithms' Congestion Window (CWND) reduction approach significantly decreases CWND upon packet loss, which lowers effective throughput, regardless of the congestion origin. Furthermore, the uncoupled Slow-Start (SS) in MPQUIC leads to independent exponential CWND growth on each path, potentially causing buffer overflow. To address these issues, we propose the CC-OLIA, which incorporates Packet Loss Classifcation (PLC) and Coupled Slow-Start (CSS). The PLC distinguishes between congestion-induced and random packet losses, adjusting CWND reduction accordingly to maintain throughput. Concurrently, the CSS module coordinates CWND growth during the SS, preventing abrupt increases. Implementation on MININET shows that CC-OLIA not only maintains fair performance but also enhances transmission efficiency across diverse network conditions.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.