{"title":"基于多bs传感的低复杂度多目标定位","authors":"Yinxiao Zhuo , Zhaocheng Wang","doi":"10.1016/j.dcan.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>Integrated Sensing and Communication (ISAC) is envisioned as a promising technology for Sixth-Generation (6G) wireless communications, which enables simultaneous high-rate communication and high-precision target localization. Compared to independent sensing and communication modules, dual-function ISAC could leverage the strengths of both communication and sensing in order to achieve cooperative gains. When considering the communication core network, ISAC system facilitates multiple communication devices to collaborate for networked sensing. This paper investigates such kind of cooperative ISAC systems with distributed transmitters and receivers to support non-connected and multi-target localization. Specifically, we introduce a Time of Arrival (TOA) based multi-target localization scheme, which leverages the bi-static range measurements between the transmitter, target, and receiver channels in order to achieve elliptical localization. To obtain the low-complexity localization, a two-stage search-refine localization methodology is proposed. In the first stage, we propose a Successive Greedy Grid-Search (SGGS) algorithm and a Successive-Cancellation-List Grid-Search (SCLGS) algorithm to address the Measurement-to-Target Association (MTA) problem with relatively low computational complexity. In the second stage, a linear approximation refinement algorithm is derived to facilitate high-precision localization. Simulation results are presented to validate the effectiveness and superiority of our proposed multi-target localization method.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1141-1149"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-complexity multi-target localization via multi-BS sensing\",\"authors\":\"Yinxiao Zhuo , Zhaocheng Wang\",\"doi\":\"10.1016/j.dcan.2024.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Integrated Sensing and Communication (ISAC) is envisioned as a promising technology for Sixth-Generation (6G) wireless communications, which enables simultaneous high-rate communication and high-precision target localization. Compared to independent sensing and communication modules, dual-function ISAC could leverage the strengths of both communication and sensing in order to achieve cooperative gains. When considering the communication core network, ISAC system facilitates multiple communication devices to collaborate for networked sensing. This paper investigates such kind of cooperative ISAC systems with distributed transmitters and receivers to support non-connected and multi-target localization. Specifically, we introduce a Time of Arrival (TOA) based multi-target localization scheme, which leverages the bi-static range measurements between the transmitter, target, and receiver channels in order to achieve elliptical localization. To obtain the low-complexity localization, a two-stage search-refine localization methodology is proposed. In the first stage, we propose a Successive Greedy Grid-Search (SGGS) algorithm and a Successive-Cancellation-List Grid-Search (SCLGS) algorithm to address the Measurement-to-Target Association (MTA) problem with relatively low computational complexity. In the second stage, a linear approximation refinement algorithm is derived to facilitate high-precision localization. Simulation results are presented to validate the effectiveness and superiority of our proposed multi-target localization method.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 4\",\"pages\":\"Pages 1141-1149\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864824001494\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824001494","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Low-complexity multi-target localization via multi-BS sensing
Integrated Sensing and Communication (ISAC) is envisioned as a promising technology for Sixth-Generation (6G) wireless communications, which enables simultaneous high-rate communication and high-precision target localization. Compared to independent sensing and communication modules, dual-function ISAC could leverage the strengths of both communication and sensing in order to achieve cooperative gains. When considering the communication core network, ISAC system facilitates multiple communication devices to collaborate for networked sensing. This paper investigates such kind of cooperative ISAC systems with distributed transmitters and receivers to support non-connected and multi-target localization. Specifically, we introduce a Time of Arrival (TOA) based multi-target localization scheme, which leverages the bi-static range measurements between the transmitter, target, and receiver channels in order to achieve elliptical localization. To obtain the low-complexity localization, a two-stage search-refine localization methodology is proposed. In the first stage, we propose a Successive Greedy Grid-Search (SGGS) algorithm and a Successive-Cancellation-List Grid-Search (SCLGS) algorithm to address the Measurement-to-Target Association (MTA) problem with relatively low computational complexity. In the second stage, a linear approximation refinement algorithm is derived to facilitate high-precision localization. Simulation results are presented to validate the effectiveness and superiority of our proposed multi-target localization method.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.