SMANet:序列增强多头注意网络,用于嘈杂计算环境下的鲁棒神经语义学习

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jia Guo , Xinyu Jia , Jinqi Zhu , Xiang Li , Yang Liu , Weijia Feng , Wanli Xue
{"title":"SMANet:序列增强多头注意网络,用于嘈杂计算环境下的鲁棒神经语义学习","authors":"Jia Guo ,&nbsp;Xinyu Jia ,&nbsp;Jinqi Zhu ,&nbsp;Xiang Li ,&nbsp;Yang Liu ,&nbsp;Weijia Feng ,&nbsp;Wanli Xue","doi":"10.1016/j.neucom.2025.131347","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional communication systems often fail to efficiently transmit meaningful information in noisy and dynamic environments, prompting the adoption of neural network architectures in semantic communication to prioritize semantic content over raw data. Existing neural models face persistent challenges in mitigating high noise interference, capturing long-range dependencies in sequences, and preserving semantic fidelity under varying conditions. This paper proposes SMANet, sequence-enhanced multi-head attention network for robust neural semantic learning in noisy computational environments. SMANet integrates multi-head attention mechanisms with a Dilated Normalization Block (DNB)—a specialized neural module for extracting local temporal features and global semantic representations—to enhance sequence processing capabilities, alleviate gradient vanishing/explosion issues during training, and improve network stability. At the transmitter, a neural semantic encoder employs dilated convolutions and normalization for robust feature extraction, paired with a channel encoder to achieve noise resilience; at the receiver, neural decoders precisely reconstruct semantics, facilitating applications in machine learning-driven cognitive systems. Experimental evaluations on AWGN and Rayleigh fading channels demonstrate SMANet’s superior performance, outperforming DeepSC by 23 % in BLEU scores, achieving a sentence similarity of 0.91 at SNR=18 dB, and maintaining 85 % semantic fidelity at SNR <span><math><mo>&lt;</mo></math></span> 6 dB, highlighting its potential for neurocomputing in resource-constrained networks.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"655 ","pages":"Article 131347"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMANet: Sequence-enhanced multi-head attention network for robust neural semantic learning in noisy computational environments\",\"authors\":\"Jia Guo ,&nbsp;Xinyu Jia ,&nbsp;Jinqi Zhu ,&nbsp;Xiang Li ,&nbsp;Yang Liu ,&nbsp;Weijia Feng ,&nbsp;Wanli Xue\",\"doi\":\"10.1016/j.neucom.2025.131347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional communication systems often fail to efficiently transmit meaningful information in noisy and dynamic environments, prompting the adoption of neural network architectures in semantic communication to prioritize semantic content over raw data. Existing neural models face persistent challenges in mitigating high noise interference, capturing long-range dependencies in sequences, and preserving semantic fidelity under varying conditions. This paper proposes SMANet, sequence-enhanced multi-head attention network for robust neural semantic learning in noisy computational environments. SMANet integrates multi-head attention mechanisms with a Dilated Normalization Block (DNB)—a specialized neural module for extracting local temporal features and global semantic representations—to enhance sequence processing capabilities, alleviate gradient vanishing/explosion issues during training, and improve network stability. At the transmitter, a neural semantic encoder employs dilated convolutions and normalization for robust feature extraction, paired with a channel encoder to achieve noise resilience; at the receiver, neural decoders precisely reconstruct semantics, facilitating applications in machine learning-driven cognitive systems. Experimental evaluations on AWGN and Rayleigh fading channels demonstrate SMANet’s superior performance, outperforming DeepSC by 23 % in BLEU scores, achieving a sentence similarity of 0.91 at SNR=18 dB, and maintaining 85 % semantic fidelity at SNR <span><math><mo>&lt;</mo></math></span> 6 dB, highlighting its potential for neurocomputing in resource-constrained networks.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"655 \",\"pages\":\"Article 131347\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225020193\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225020193","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

传统的通信系统往往不能有效地在嘈杂和动态的环境中传输有意义的信息,这促使在语义通信中采用神经网络架构来优先考虑语义内容而不是原始数据。现有的神经模型在减轻高噪声干扰、捕获序列中的远程依赖关系以及在不同条件下保持语义保真度方面面临着持续的挑战。本文提出了SMANet,即序列增强多头注意网络,用于嘈杂计算环境下的鲁棒神经语义学习。SMANet将多头注意机制与扩展归一化块(DNB)(用于提取局部时间特征和全局语义表示的专用神经模块)集成在一起,以增强序列处理能力,缓解训练期间的梯度消失/爆炸问题,并提高网络稳定性。在发送端,神经语义编码器采用扩展卷积和归一化进行鲁棒特征提取,并与信道编码器配对以实现噪声恢复;在接收端,神经解码器精确地重建语义,促进了机器学习驱动的认知系统的应用。在AWGN和Rayleigh衰落信道上的实验评估表明,SMANet的性能优越,BLEU分数比DeepSC高出23 %,在信噪比=18 dB时实现了0.91的句子相似度,在信噪比<; 6 dB时保持了85 %的语义保真度,突出了其在资源受限网络中神经计算的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SMANet: Sequence-enhanced multi-head attention network for robust neural semantic learning in noisy computational environments
Traditional communication systems often fail to efficiently transmit meaningful information in noisy and dynamic environments, prompting the adoption of neural network architectures in semantic communication to prioritize semantic content over raw data. Existing neural models face persistent challenges in mitigating high noise interference, capturing long-range dependencies in sequences, and preserving semantic fidelity under varying conditions. This paper proposes SMANet, sequence-enhanced multi-head attention network for robust neural semantic learning in noisy computational environments. SMANet integrates multi-head attention mechanisms with a Dilated Normalization Block (DNB)—a specialized neural module for extracting local temporal features and global semantic representations—to enhance sequence processing capabilities, alleviate gradient vanishing/explosion issues during training, and improve network stability. At the transmitter, a neural semantic encoder employs dilated convolutions and normalization for robust feature extraction, paired with a channel encoder to achieve noise resilience; at the receiver, neural decoders precisely reconstruct semantics, facilitating applications in machine learning-driven cognitive systems. Experimental evaluations on AWGN and Rayleigh fading channels demonstrate SMANet’s superior performance, outperforming DeepSC by 23 % in BLEU scores, achieving a sentence similarity of 0.91 at SNR=18 dB, and maintaining 85 % semantic fidelity at SNR < 6 dB, highlighting its potential for neurocomputing in resource-constrained networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信