{"title":"区块链物联网中的轻量级共识机制:深入分析和研究方向","authors":"Somia Sahraoui , Abdelmalik Bachir","doi":"10.1016/j.dcan.2024.12.007","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Things (IoT) has gained substantial attention in both academic research and real-world applications. The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services. However, this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats. Consequently, innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed. Recently, the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions, commonly referred to as the Internet of Blockchained Things (IoBT). Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments. Within this context, consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems. The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential. This paper presents a comprehensive examination of lightweight, constraint-aware consensus algorithms tailored for IoBT. The study categorizes these consensus mechanisms based on their core operations, the security of the block validation process, the incorporation of AI techniques, and the specific applications they are designed to support.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 1246-1261"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight consensus mechanisms in the Internet of Blockchained Things: Thorough analysis and research directions\",\"authors\":\"Somia Sahraoui , Abdelmalik Bachir\",\"doi\":\"10.1016/j.dcan.2024.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Internet of Things (IoT) has gained substantial attention in both academic research and real-world applications. The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services. However, this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats. Consequently, innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed. Recently, the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions, commonly referred to as the Internet of Blockchained Things (IoBT). Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments. Within this context, consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems. The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential. This paper presents a comprehensive examination of lightweight, constraint-aware consensus algorithms tailored for IoBT. The study categorizes these consensus mechanisms based on their core operations, the security of the block validation process, the incorporation of AI techniques, and the specific applications they are designed to support.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 4\",\"pages\":\"Pages 1246-1261\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864824001767\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824001767","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Lightweight consensus mechanisms in the Internet of Blockchained Things: Thorough analysis and research directions
The Internet of Things (IoT) has gained substantial attention in both academic research and real-world applications. The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services. However, this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats. Consequently, innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed. Recently, the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions, commonly referred to as the Internet of Blockchained Things (IoBT). Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments. Within this context, consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems. The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential. This paper presents a comprehensive examination of lightweight, constraint-aware consensus algorithms tailored for IoBT. The study categorizes these consensus mechanisms based on their core operations, the security of the block validation process, the incorporation of AI techniques, and the specific applications they are designed to support.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.