Mohamed S. Sayed , Hatem M. Zakaria , Abdelhady M. Abdelhady
{"title":"增强6G及以上的灵活性和系统性能:基于用户的数字命理学和波形方法","authors":"Mohamed S. Sayed , Hatem M. Zakaria , Abdelhady M. Abdelhady","doi":"10.1016/j.dcan.2024.10.020","DOIUrl":null,"url":null,"abstract":"<div><div>A Mixed Numerology OFDM (MN-OFDM) system is essential in 6G and beyond. However, it encounters challenges due to Inter-Numerology Interference (INI). The upcoming 6G technology aims to support innovative applications with high data rates, low latency, and reliability. Therefore, effective handling of INI is crucial to meet the diverse requirements of these applications. To address INI in MN-OFDM systems, this paper proposes a User-Based Numerology and Waveform (UBNW) approach that uses various OFDM-based waveforms and their parameters to mitigate INI. By assigning a specific waveform and numerology to each user, UBNW mitigates INI, optimizes service characteristics, and addresses user demands efficiently. The required Guard Bands (GB), expressed as a ratio of user bandwidth, vary significantly across different waveforms at an SIR of 25 dB. For instance, OFDM-FOFDM needs only 2.5%, while OFDM-UFMC, OFDM-WOLA, and conventional OFDM require 7.5%, 24%, and 40%, respectively. The time-frequency efficiency also varies between the waveforms. FOFDM achieves 85.6%, UFMC achieves 81.6%, WOLA achieves 70.7%, and conventional OFDM achieves 66.8%. The simulation results demonstrate that the UBNW approach not only effectively mitigates INI but also enhances system flexibility and time-frequency efficiency while simultaneously reducing the required GB.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 975-991"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing flexibility and system performance in 6G and beyond: A user-based numerology and waveform approach\",\"authors\":\"Mohamed S. Sayed , Hatem M. Zakaria , Abdelhady M. Abdelhady\",\"doi\":\"10.1016/j.dcan.2024.10.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A Mixed Numerology OFDM (MN-OFDM) system is essential in 6G and beyond. However, it encounters challenges due to Inter-Numerology Interference (INI). The upcoming 6G technology aims to support innovative applications with high data rates, low latency, and reliability. Therefore, effective handling of INI is crucial to meet the diverse requirements of these applications. To address INI in MN-OFDM systems, this paper proposes a User-Based Numerology and Waveform (UBNW) approach that uses various OFDM-based waveforms and their parameters to mitigate INI. By assigning a specific waveform and numerology to each user, UBNW mitigates INI, optimizes service characteristics, and addresses user demands efficiently. The required Guard Bands (GB), expressed as a ratio of user bandwidth, vary significantly across different waveforms at an SIR of 25 dB. For instance, OFDM-FOFDM needs only 2.5%, while OFDM-UFMC, OFDM-WOLA, and conventional OFDM require 7.5%, 24%, and 40%, respectively. The time-frequency efficiency also varies between the waveforms. FOFDM achieves 85.6%, UFMC achieves 81.6%, WOLA achieves 70.7%, and conventional OFDM achieves 66.8%. The simulation results demonstrate that the UBNW approach not only effectively mitigates INI but also enhances system flexibility and time-frequency efficiency while simultaneously reducing the required GB.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 4\",\"pages\":\"Pages 975-991\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864824001482\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824001482","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Enhancing flexibility and system performance in 6G and beyond: A user-based numerology and waveform approach
A Mixed Numerology OFDM (MN-OFDM) system is essential in 6G and beyond. However, it encounters challenges due to Inter-Numerology Interference (INI). The upcoming 6G technology aims to support innovative applications with high data rates, low latency, and reliability. Therefore, effective handling of INI is crucial to meet the diverse requirements of these applications. To address INI in MN-OFDM systems, this paper proposes a User-Based Numerology and Waveform (UBNW) approach that uses various OFDM-based waveforms and their parameters to mitigate INI. By assigning a specific waveform and numerology to each user, UBNW mitigates INI, optimizes service characteristics, and addresses user demands efficiently. The required Guard Bands (GB), expressed as a ratio of user bandwidth, vary significantly across different waveforms at an SIR of 25 dB. For instance, OFDM-FOFDM needs only 2.5%, while OFDM-UFMC, OFDM-WOLA, and conventional OFDM require 7.5%, 24%, and 40%, respectively. The time-frequency efficiency also varies between the waveforms. FOFDM achieves 85.6%, UFMC achieves 81.6%, WOLA achieves 70.7%, and conventional OFDM achieves 66.8%. The simulation results demonstrate that the UBNW approach not only effectively mitigates INI but also enhances system flexibility and time-frequency efficiency while simultaneously reducing the required GB.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.