FlyCache:推荐驱动的边缘缓存架构,用于视频流的全生命周期

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS
Shaohua Cao , Quancheng Zheng , Zijun Zhan , Yansheng Yang , Huaqi Lv , Danyang Zheng , Weishan Zhang
{"title":"FlyCache:推荐驱动的边缘缓存架构,用于视频流的全生命周期","authors":"Shaohua Cao ,&nbsp;Quancheng Zheng ,&nbsp;Zijun Zhan ,&nbsp;Yansheng Yang ,&nbsp;Huaqi Lv ,&nbsp;Danyang Zheng ,&nbsp;Weishan Zhang","doi":"10.1016/j.dcan.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of 5G technology, the proportion of video traffic on the Internet is increasing, bringing pressure on the network infrastructure. Edge computing technology provides a feasible solution for optimizing video content distribution. However, the limited edge node cache capacity and dynamic user requests make edge caching more complex. Therefore, we propose a recommendation-driven edge <strong>C</strong>aching network architecture for the <strong>F</strong>ull <strong>l</strong>ife c<strong>y</strong>cle of video streaming (FlyCache) designed to improve users' Quality of Experience (QoE) and reduce backhaul traffic consumption. FlyCache implements intelligent caching management across three key stages: before-playback, during-playback, and after-playback. Specifically, we introduce a cache placement policy for the before-playback stage, a dynamic prefetching and cache admission policy for the during-playback stage, and a progressive cache eviction policy for the after-playback stage. To validate the effectiveness of FlyCache, we developed a user behavior-driven edge caching simulation framework incorporating recommendation mechanisms. Experiments conducted on the MovieLens and synthetic datasets demonstrate that FlyCache outperforms other caching strategies in terms of byte hit rate, backhaul traffic, and delayed startup rate.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 4","pages":"Pages 961-974"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FlyCache: Recommendation-driven edge caching architecture for full life cycle of video streaming\",\"authors\":\"Shaohua Cao ,&nbsp;Quancheng Zheng ,&nbsp;Zijun Zhan ,&nbsp;Yansheng Yang ,&nbsp;Huaqi Lv ,&nbsp;Danyang Zheng ,&nbsp;Weishan Zhang\",\"doi\":\"10.1016/j.dcan.2025.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid development of 5G technology, the proportion of video traffic on the Internet is increasing, bringing pressure on the network infrastructure. Edge computing technology provides a feasible solution for optimizing video content distribution. However, the limited edge node cache capacity and dynamic user requests make edge caching more complex. Therefore, we propose a recommendation-driven edge <strong>C</strong>aching network architecture for the <strong>F</strong>ull <strong>l</strong>ife c<strong>y</strong>cle of video streaming (FlyCache) designed to improve users' Quality of Experience (QoE) and reduce backhaul traffic consumption. FlyCache implements intelligent caching management across three key stages: before-playback, during-playback, and after-playback. Specifically, we introduce a cache placement policy for the before-playback stage, a dynamic prefetching and cache admission policy for the during-playback stage, and a progressive cache eviction policy for the after-playback stage. To validate the effectiveness of FlyCache, we developed a user behavior-driven edge caching simulation framework incorporating recommendation mechanisms. Experiments conducted on the MovieLens and synthetic datasets demonstrate that FlyCache outperforms other caching strategies in terms of byte hit rate, backhaul traffic, and delayed startup rate.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 4\",\"pages\":\"Pages 961-974\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235286482500001X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235286482500001X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着5G技术的快速发展,互联网上视频流量的比例越来越大,给网络基础设施带来了压力。边缘计算技术为优化视频内容分发提供了可行的解决方案。然而,有限的边缘节点缓存容量和动态用户请求使得边缘缓存更加复杂。因此,我们提出了一种推荐驱动的边缘缓存网络架构,用于视频流的全生命周期(FlyCache),旨在提高用户的体验质量(QoE)并减少回程流量消耗。FlyCache在三个关键阶段实现智能缓存管理:播放前、播放期间和播放后。具体来说,我们为播放前阶段引入了一个缓存放置策略,为播放期间阶段引入了一个动态预取和缓存准入策略,并为播放后阶段引入了一个渐进的缓存清除策略。为了验证FlyCache的有效性,我们开发了一个包含推荐机制的用户行为驱动的边缘缓存模拟框架。在MovieLens和合成数据集上进行的实验表明,FlyCache在字节命中率、回程流量和延迟启动率方面优于其他缓存策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FlyCache: Recommendation-driven edge caching architecture for full life cycle of video streaming
With the rapid development of 5G technology, the proportion of video traffic on the Internet is increasing, bringing pressure on the network infrastructure. Edge computing technology provides a feasible solution for optimizing video content distribution. However, the limited edge node cache capacity and dynamic user requests make edge caching more complex. Therefore, we propose a recommendation-driven edge Caching network architecture for the Full life cycle of video streaming (FlyCache) designed to improve users' Quality of Experience (QoE) and reduce backhaul traffic consumption. FlyCache implements intelligent caching management across three key stages: before-playback, during-playback, and after-playback. Specifically, we introduce a cache placement policy for the before-playback stage, a dynamic prefetching and cache admission policy for the during-playback stage, and a progressive cache eviction policy for the after-playback stage. To validate the effectiveness of FlyCache, we developed a user behavior-driven edge caching simulation framework incorporating recommendation mechanisms. Experiments conducted on the MovieLens and synthetic datasets demonstrate that FlyCache outperforms other caching strategies in terms of byte hit rate, backhaul traffic, and delayed startup rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信