LSDF-Net:一种高效轻量级的超声焊接表面缺陷检测方法

IF 4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuhang Zhang , Xin Jin , Zhijiang Lou , Sen Wang , Shan Lu , Yifan He
{"title":"LSDF-Net:一种高效轻量级的超声焊接表面缺陷检测方法","authors":"Shuhang Zhang ,&nbsp;Xin Jin ,&nbsp;Zhijiang Lou ,&nbsp;Sen Wang ,&nbsp;Shan Lu ,&nbsp;Yifan He","doi":"10.1016/j.jajp.2025.100339","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes LSDF-Net, a lightweight and high-speed detection network designed to address the challenges of insufficient accuracy and high computational cost in ultrasonic welding surface defect detection. Built upon the YOLOv8 architecture, LSDF-Net integrates a Dynamic Surface Detail Fusion Module (DSDFM) to enhance multi-scale feature representation and introduces a Lightweight Shared Convolution and Separate Batch Normalization detection head (LSCSBD) to reduce parameters and accelerate inference. In addition, a LAMP-based pruning strategy is applied, which achieves a 67% reduction in model size and a 48% reduction in computational cost with almost no performance degradation. Experimental results on both a self-constructed ultrasonic welding defect dataset and the public NEU-DET dataset demonstrate that LSDF-Net achieves the best overall performance, striking an excellent balance between accuracy and real-time inference. These results highlight its strong potential for real-time industrial defect detection applications.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100339"},"PeriodicalIF":4.0000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LSDF-Net: An efficient lightweight defect detection method for ultrasonic welding surfaces\",\"authors\":\"Shuhang Zhang ,&nbsp;Xin Jin ,&nbsp;Zhijiang Lou ,&nbsp;Sen Wang ,&nbsp;Shan Lu ,&nbsp;Yifan He\",\"doi\":\"10.1016/j.jajp.2025.100339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes LSDF-Net, a lightweight and high-speed detection network designed to address the challenges of insufficient accuracy and high computational cost in ultrasonic welding surface defect detection. Built upon the YOLOv8 architecture, LSDF-Net integrates a Dynamic Surface Detail Fusion Module (DSDFM) to enhance multi-scale feature representation and introduces a Lightweight Shared Convolution and Separate Batch Normalization detection head (LSCSBD) to reduce parameters and accelerate inference. In addition, a LAMP-based pruning strategy is applied, which achieves a 67% reduction in model size and a 48% reduction in computational cost with almost no performance degradation. Experimental results on both a self-constructed ultrasonic welding defect dataset and the public NEU-DET dataset demonstrate that LSDF-Net achieves the best overall performance, striking an excellent balance between accuracy and real-time inference. These results highlight its strong potential for real-time industrial defect detection applications.</div></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"12 \",\"pages\":\"Article 100339\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330925000603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

针对超声焊接表面缺陷检测精度不足、计算成本高的问题,提出了一种轻量、高速的检测网络LSDF-Net。基于YOLOv8架构,LSDF-Net集成了动态表面细节融合模块(DSDFM)来增强多尺度特征表示,并引入了轻量级共享卷积和单独批归一化检测头(LSCSBD)来减少参数和加速推理。此外,应用了基于lamp的剪枝策略,在几乎没有性能下降的情况下,模型尺寸减少了67%,计算成本减少了48%。在自构建的超声焊接缺陷数据集和公开的nue - det数据集上的实验结果表明,LSDF-Net在准确性和实时推理之间取得了很好的平衡,取得了最佳的综合性能。这些结果突出了它在实时工业缺陷检测应用中的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LSDF-Net: An efficient lightweight defect detection method for ultrasonic welding surfaces
This paper proposes LSDF-Net, a lightweight and high-speed detection network designed to address the challenges of insufficient accuracy and high computational cost in ultrasonic welding surface defect detection. Built upon the YOLOv8 architecture, LSDF-Net integrates a Dynamic Surface Detail Fusion Module (DSDFM) to enhance multi-scale feature representation and introduces a Lightweight Shared Convolution and Separate Batch Normalization detection head (LSCSBD) to reduce parameters and accelerate inference. In addition, a LAMP-based pruning strategy is applied, which achieves a 67% reduction in model size and a 48% reduction in computational cost with almost no performance degradation. Experimental results on both a self-constructed ultrasonic welding defect dataset and the public NEU-DET dataset demonstrate that LSDF-Net achieves the best overall performance, striking an excellent balance between accuracy and real-time inference. These results highlight its strong potential for real-time industrial defect detection applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信