Chris Bowman , Maud De Visscher , Amit Hazi , Emily Norton
{"title":"厄密对称对的反球Hecke范畴","authors":"Chris Bowman , Maud De Visscher , Amit Hazi , Emily Norton","doi":"10.1016/j.aim.2025.110501","DOIUrl":null,"url":null,"abstract":"<div><div>We calculate the <em>p</em>-Kazhdan–Lusztig polynomials for Hermitian symmetric pairs and prove that the corresponding anti-spherical Hecke categories are standard Koszul. We prove that the combinatorial invariance conjecture can be lifted to the level of graded Morita equivalences between subquotients of these Hecke categories.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110501"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The anti-spherical Hecke categories for Hermitian symmetric pairs\",\"authors\":\"Chris Bowman , Maud De Visscher , Amit Hazi , Emily Norton\",\"doi\":\"10.1016/j.aim.2025.110501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We calculate the <em>p</em>-Kazhdan–Lusztig polynomials for Hermitian symmetric pairs and prove that the corresponding anti-spherical Hecke categories are standard Koszul. We prove that the combinatorial invariance conjecture can be lifted to the level of graded Morita equivalences between subquotients of these Hecke categories.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110501\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003998\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003998","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The anti-spherical Hecke categories for Hermitian symmetric pairs
We calculate the p-Kazhdan–Lusztig polynomials for Hermitian symmetric pairs and prove that the corresponding anti-spherical Hecke categories are standard Koszul. We prove that the combinatorial invariance conjecture can be lifted to the level of graded Morita equivalences between subquotients of these Hecke categories.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.