函数域上标志变异的Arakelov几何及相关主题

IF 1.5 1区 数学 Q1 MATHEMATICS
Yangyu Fan , Wenbin Luo , Binggang Qu
{"title":"函数域上标志变异的Arakelov几何及相关主题","authors":"Yangyu Fan ,&nbsp;Wenbin Luo ,&nbsp;Binggang Qu","doi":"10.1016/j.aim.2025.110508","DOIUrl":null,"url":null,"abstract":"<div><div>Let <strong>k</strong> be an algebraically closed field of characteristic zero. Let <em>G</em> be a connected reductive group over <strong>k</strong>, <span><math><mi>P</mi><mo>⊆</mo><mi>G</mi></math></span> be a parabolic subgroup and <span><math><mi>λ</mi><mo>:</mo><mi>P</mi><mo>⟶</mo><mi>G</mi></math></span> be a strictly antidominant character. Let <em>C</em> be a projective smooth curve over <strong>k</strong> with function field <span><math><mi>K</mi><mo>=</mo><mi>k</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> and <em>F</em> be a principal <em>G</em>-bundle on <em>C</em>. Then <span><math><mi>F</mi><mo>/</mo><mi>P</mi><mo>⟶</mo><mi>C</mi></math></span> is a flag bundle and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>=</mo><mi>F</mi><msub><mrow><mo>×</mo></mrow><mrow><mi>P</mi></mrow></msub><msub><mrow><mi>k</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> on <span><math><mi>F</mi><mo>/</mo><mi>P</mi></math></span> is a relatively ample line bundle.</div><div>We compute the height filtration, successive minima, and the Boucksom-Chen concave transform of the height function <span><math><msub><mrow><mi>h</mi></mrow><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>λ</mi></mrow></msub></mrow></msub><mo>:</mo><mi>X</mi><mo>(</mo><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>⟶</mo><mi>R</mi></math></span> over the flag variety <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>(</mo><mi>F</mi><mo>/</mo><mi>P</mi><mo>)</mo></mrow><mrow><mi>K</mi></mrow></msub></math></span>. An interesting application is that the height of <em>X</em> equals to a weighted average of successive minima, and one may view this as a refinement of Zhang's inequality of successive minima.</div><div>Let <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>F</mi><mo>/</mo><mi>P</mi><mo>)</mo></math></span> be the numerical class of a vertical fiber. We compute the augmented base loci <span><math><msub><mrow><mi>B</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>−</mo><mi>t</mi><mi>f</mi><mo>)</mo></math></span> for any <span><math><mi>t</mi><mo>∈</mo><mi>R</mi></math></span>, and it turns out that they are almost the same as the height filtration. As a corollary, we compute the <em>k</em>-th movable cones of flag bundles over curves for all <em>k</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110508"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arakelov geometry on flag varieties over function fields and related topics\",\"authors\":\"Yangyu Fan ,&nbsp;Wenbin Luo ,&nbsp;Binggang Qu\",\"doi\":\"10.1016/j.aim.2025.110508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <strong>k</strong> be an algebraically closed field of characteristic zero. Let <em>G</em> be a connected reductive group over <strong>k</strong>, <span><math><mi>P</mi><mo>⊆</mo><mi>G</mi></math></span> be a parabolic subgroup and <span><math><mi>λ</mi><mo>:</mo><mi>P</mi><mo>⟶</mo><mi>G</mi></math></span> be a strictly antidominant character. Let <em>C</em> be a projective smooth curve over <strong>k</strong> with function field <span><math><mi>K</mi><mo>=</mo><mi>k</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> and <em>F</em> be a principal <em>G</em>-bundle on <em>C</em>. Then <span><math><mi>F</mi><mo>/</mo><mi>P</mi><mo>⟶</mo><mi>C</mi></math></span> is a flag bundle and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>=</mo><mi>F</mi><msub><mrow><mo>×</mo></mrow><mrow><mi>P</mi></mrow></msub><msub><mrow><mi>k</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> on <span><math><mi>F</mi><mo>/</mo><mi>P</mi></math></span> is a relatively ample line bundle.</div><div>We compute the height filtration, successive minima, and the Boucksom-Chen concave transform of the height function <span><math><msub><mrow><mi>h</mi></mrow><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>λ</mi></mrow></msub></mrow></msub><mo>:</mo><mi>X</mi><mo>(</mo><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>⟶</mo><mi>R</mi></math></span> over the flag variety <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>(</mo><mi>F</mi><mo>/</mo><mi>P</mi><mo>)</mo></mrow><mrow><mi>K</mi></mrow></msub></math></span>. An interesting application is that the height of <em>X</em> equals to a weighted average of successive minima, and one may view this as a refinement of Zhang's inequality of successive minima.</div><div>Let <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>F</mi><mo>/</mo><mi>P</mi><mo>)</mo></math></span> be the numerical class of a vertical fiber. We compute the augmented base loci <span><math><msub><mrow><mi>B</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>−</mo><mi>t</mi><mi>f</mi><mo>)</mo></math></span> for any <span><math><mi>t</mi><mo>∈</mo><mi>R</mi></math></span>, and it turns out that they are almost the same as the height filtration. As a corollary, we compute the <em>k</em>-th movable cones of flag bundles over curves for all <em>k</em>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110508\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004062\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004062","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设k为特征为0的代数闭域。设G为k上的连通约化群,P≤G为抛物子群,λ:P≤G为严格反支配性质。设C为函数场k =k(C)的k上的光滑投影曲线,F为C上的主g束,则F/P为标志束,F/P上的Lλ=F×Pkλ为相对充足的线束。我们计算高度过滤,连续最小值,以及高度函数hLλ:X(K) R在标志变量X=(F/P)K上的Boucksom-Chen凹变换。一个有趣的应用是X的高度等于连续最小值的加权平均值,人们可以将其视为张的连续最小值不等式的细化。设f∈N1(f /P)为垂直光纤的数值类。我们计算了任意t∈R的增广基位点B+(Lλ−tf),结果表明它们几乎与高度过滤相同。作为推论,我们计算了所有k个曲线上旗束的第k个可动锥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arakelov geometry on flag varieties over function fields and related topics
Let k be an algebraically closed field of characteristic zero. Let G be a connected reductive group over k, PG be a parabolic subgroup and λ:PG be a strictly antidominant character. Let C be a projective smooth curve over k with function field K=k(C) and F be a principal G-bundle on C. Then F/PC is a flag bundle and Lλ=F×Pkλ on F/P is a relatively ample line bundle.
We compute the height filtration, successive minima, and the Boucksom-Chen concave transform of the height function hLλ:X(K)R over the flag variety X=(F/P)K. An interesting application is that the height of X equals to a weighted average of successive minima, and one may view this as a refinement of Zhang's inequality of successive minima.
Let fN1(F/P) be the numerical class of a vertical fiber. We compute the augmented base loci B+(Lλtf) for any tR, and it turns out that they are almost the same as the height filtration. As a corollary, we compute the k-th movable cones of flag bundles over curves for all k.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信