{"title":"函数域上标志变异的Arakelov几何及相关主题","authors":"Yangyu Fan , Wenbin Luo , Binggang Qu","doi":"10.1016/j.aim.2025.110508","DOIUrl":null,"url":null,"abstract":"<div><div>Let <strong>k</strong> be an algebraically closed field of characteristic zero. Let <em>G</em> be a connected reductive group over <strong>k</strong>, <span><math><mi>P</mi><mo>⊆</mo><mi>G</mi></math></span> be a parabolic subgroup and <span><math><mi>λ</mi><mo>:</mo><mi>P</mi><mo>⟶</mo><mi>G</mi></math></span> be a strictly antidominant character. Let <em>C</em> be a projective smooth curve over <strong>k</strong> with function field <span><math><mi>K</mi><mo>=</mo><mi>k</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> and <em>F</em> be a principal <em>G</em>-bundle on <em>C</em>. Then <span><math><mi>F</mi><mo>/</mo><mi>P</mi><mo>⟶</mo><mi>C</mi></math></span> is a flag bundle and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>=</mo><mi>F</mi><msub><mrow><mo>×</mo></mrow><mrow><mi>P</mi></mrow></msub><msub><mrow><mi>k</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> on <span><math><mi>F</mi><mo>/</mo><mi>P</mi></math></span> is a relatively ample line bundle.</div><div>We compute the height filtration, successive minima, and the Boucksom-Chen concave transform of the height function <span><math><msub><mrow><mi>h</mi></mrow><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>λ</mi></mrow></msub></mrow></msub><mo>:</mo><mi>X</mi><mo>(</mo><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>⟶</mo><mi>R</mi></math></span> over the flag variety <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>(</mo><mi>F</mi><mo>/</mo><mi>P</mi><mo>)</mo></mrow><mrow><mi>K</mi></mrow></msub></math></span>. An interesting application is that the height of <em>X</em> equals to a weighted average of successive minima, and one may view this as a refinement of Zhang's inequality of successive minima.</div><div>Let <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>F</mi><mo>/</mo><mi>P</mi><mo>)</mo></math></span> be the numerical class of a vertical fiber. We compute the augmented base loci <span><math><msub><mrow><mi>B</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>−</mo><mi>t</mi><mi>f</mi><mo>)</mo></math></span> for any <span><math><mi>t</mi><mo>∈</mo><mi>R</mi></math></span>, and it turns out that they are almost the same as the height filtration. As a corollary, we compute the <em>k</em>-th movable cones of flag bundles over curves for all <em>k</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110508"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arakelov geometry on flag varieties over function fields and related topics\",\"authors\":\"Yangyu Fan , Wenbin Luo , Binggang Qu\",\"doi\":\"10.1016/j.aim.2025.110508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <strong>k</strong> be an algebraically closed field of characteristic zero. Let <em>G</em> be a connected reductive group over <strong>k</strong>, <span><math><mi>P</mi><mo>⊆</mo><mi>G</mi></math></span> be a parabolic subgroup and <span><math><mi>λ</mi><mo>:</mo><mi>P</mi><mo>⟶</mo><mi>G</mi></math></span> be a strictly antidominant character. Let <em>C</em> be a projective smooth curve over <strong>k</strong> with function field <span><math><mi>K</mi><mo>=</mo><mi>k</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> and <em>F</em> be a principal <em>G</em>-bundle on <em>C</em>. Then <span><math><mi>F</mi><mo>/</mo><mi>P</mi><mo>⟶</mo><mi>C</mi></math></span> is a flag bundle and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>=</mo><mi>F</mi><msub><mrow><mo>×</mo></mrow><mrow><mi>P</mi></mrow></msub><msub><mrow><mi>k</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> on <span><math><mi>F</mi><mo>/</mo><mi>P</mi></math></span> is a relatively ample line bundle.</div><div>We compute the height filtration, successive minima, and the Boucksom-Chen concave transform of the height function <span><math><msub><mrow><mi>h</mi></mrow><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>λ</mi></mrow></msub></mrow></msub><mo>:</mo><mi>X</mi><mo>(</mo><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>⟶</mo><mi>R</mi></math></span> over the flag variety <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>(</mo><mi>F</mi><mo>/</mo><mi>P</mi><mo>)</mo></mrow><mrow><mi>K</mi></mrow></msub></math></span>. An interesting application is that the height of <em>X</em> equals to a weighted average of successive minima, and one may view this as a refinement of Zhang's inequality of successive minima.</div><div>Let <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>F</mi><mo>/</mo><mi>P</mi><mo>)</mo></math></span> be the numerical class of a vertical fiber. We compute the augmented base loci <span><math><msub><mrow><mi>B</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>−</mo><mi>t</mi><mi>f</mi><mo>)</mo></math></span> for any <span><math><mi>t</mi><mo>∈</mo><mi>R</mi></math></span>, and it turns out that they are almost the same as the height filtration. As a corollary, we compute the <em>k</em>-th movable cones of flag bundles over curves for all <em>k</em>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110508\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004062\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004062","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Arakelov geometry on flag varieties over function fields and related topics
Let k be an algebraically closed field of characteristic zero. Let G be a connected reductive group over k, be a parabolic subgroup and be a strictly antidominant character. Let C be a projective smooth curve over k with function field and F be a principal G-bundle on C. Then is a flag bundle and on is a relatively ample line bundle.
We compute the height filtration, successive minima, and the Boucksom-Chen concave transform of the height function over the flag variety . An interesting application is that the height of X equals to a weighted average of successive minima, and one may view this as a refinement of Zhang's inequality of successive minima.
Let be the numerical class of a vertical fiber. We compute the augmented base loci for any , and it turns out that they are almost the same as the height filtration. As a corollary, we compute the k-th movable cones of flag bundles over curves for all k.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.