给出了李群的一个积分公式,并将马修猜想简化为阿贝尔非李猜想

IF 1.5 1区 数学 Q1 MATHEMATICS
Michael Müger , Lars Tuset
{"title":"给出了李群的一个积分公式,并将马修猜想简化为阿贝尔非李猜想","authors":"Michael Müger ,&nbsp;Lars Tuset","doi":"10.1016/j.aim.2025.110500","DOIUrl":null,"url":null,"abstract":"<div><div>We present an explicit integration formula for the Haar integral on a compact connected Lie group. This formula relies on a known decomposition of a compact connected simple Lie group into symplectic leaves, when one views the group as a Poisson Lie group. In this setting the Haar integral is constructed using the Kostant harmonic volume form on the corresponding flag manifold, and explicit coordinates are known for these invariant differential forms. The formula obtained is related to one found by Reshetikhin-Yakimov.</div><div>Using our integration formula, we reduce the Mathieu conjecture to two stronger conjectures about Laurent polynomials in several complex variables with polynomial coefficients in several real variable polynomials. In these stronger conjectures there is no reference to Lie group theory.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110500"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integral formula for Lie groups, and the Mathieu conjecture reduced to Abelian non-Lie conjectures\",\"authors\":\"Michael Müger ,&nbsp;Lars Tuset\",\"doi\":\"10.1016/j.aim.2025.110500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present an explicit integration formula for the Haar integral on a compact connected Lie group. This formula relies on a known decomposition of a compact connected simple Lie group into symplectic leaves, when one views the group as a Poisson Lie group. In this setting the Haar integral is constructed using the Kostant harmonic volume form on the corresponding flag manifold, and explicit coordinates are known for these invariant differential forms. The formula obtained is related to one found by Reshetikhin-Yakimov.</div><div>Using our integration formula, we reduce the Mathieu conjecture to two stronger conjectures about Laurent polynomials in several complex variables with polynomial coefficients in several real variable polynomials. In these stronger conjectures there is no reference to Lie group theory.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110500\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003986\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003986","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了紧连通李群上Haar积分的显式积分公式。这个公式依赖于一个已知的紧连通单李群分解成辛叶,当一个人把这个群看作泊松李群时。在这种情况下,哈尔积分是用相应的标志流形上的科斯坦调和体积形式构造的,这些不变微分形式的显式坐标是已知的。所得公式与Reshetikhin-Yakimov发现的公式有关。利用我们的积分公式,我们将Mathieu猜想简化为关于几个复数变量中的Laurent多项式的两个更强的猜想,在几个实数变量多项式中具有多项式系数。在这些较强的猜想中,没有提到李群理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An integral formula for Lie groups, and the Mathieu conjecture reduced to Abelian non-Lie conjectures
We present an explicit integration formula for the Haar integral on a compact connected Lie group. This formula relies on a known decomposition of a compact connected simple Lie group into symplectic leaves, when one views the group as a Poisson Lie group. In this setting the Haar integral is constructed using the Kostant harmonic volume form on the corresponding flag manifold, and explicit coordinates are known for these invariant differential forms. The formula obtained is related to one found by Reshetikhin-Yakimov.
Using our integration formula, we reduce the Mathieu conjecture to two stronger conjectures about Laurent polynomials in several complex variables with polynomial coefficients in several real variable polynomials. In these stronger conjectures there is no reference to Lie group theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信