无三角图中结构的演化

IF 1.5 1区 数学 Q1 MATHEMATICS
Matthew Jenssen , Will Perkins , Aditya Potukuchi
{"title":"无三角图中结构的演化","authors":"Matthew Jenssen ,&nbsp;Will Perkins ,&nbsp;Aditya Potukuchi","doi":"10.1016/j.aim.2025.110499","DOIUrl":null,"url":null,"abstract":"<div><div>We study the typical structure and the number of triangle-free graphs with <em>n</em> vertices and <em>m</em> edges where <em>m</em> is large enough so that a typical triangle-free graph has a cut containing nearly all of its edges, but may not be bipartite.</div><div>Erdős, Kleitman, and Rothschild showed that almost every triangle-free graph is bipartite, which leads to an asymptotic formula for the number of triangle-free graphs on <em>n</em> vertices. Osthus, Prömel, and Taraz later showed that for <span><math><mi>m</mi><mo>≥</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo><mfrac><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></math></span>, almost every triangle-free graph on <em>n</em> vertices and <em>m</em> edges is bipartite, which likewise leads to an asymptotic formula for their number. Here we give a precise characterization of the distribution of edges within each part of the max cut of a uniformly chosen triangle-free graph <em>G</em> on <em>n</em> vertices and <em>m</em> edges, for a larger range of densities with <span><math><mi>m</mi><mo>=</mo><mi>Θ</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>. Using this characterization, we describe the evolution of the structure of typical triangle-free graphs as the density changes. We show that as the number of edges decreases below <span><math><mfrac><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></math></span>, the following structural changes occur in <em>G</em>:<ul><li><span>•</span><span><div>Isolated edges, then trees, then more complex subgraphs emerge as ‘defect edges’, the edges within the parts of a max cut of <em>G</em>. In fact, the distribution of defect edges is first that of independent Erdős-Rényi random graphs inside the parts, then that of independent exponential random graphs, conditioned on a small maximum degree and no triangles.</div></span></li><li><span>•</span><span><div>There is a sharp threshold for 3-colorability at <span><math><mi>m</mi><mo>∼</mo><mfrac><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></math></span> and a sharp threshold between 4-colorability and unbounded chromatic number at <span><math><mi>m</mi><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></math></span>.</div></span></li><li><span>•</span><span><div>Giant components emerge in the defect edges at <span><math><mi>m</mi><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></math></span>.</div></span></li></ul></div><div>We further use this structural characterization to prove asymptotic formulas for the number of triangle-free graphs with <em>n</em> vertices and <em>m</em> edges in this range of densities. The asymptotic formula exhibits a change in form around the threshold <span><math><mi>m</mi><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></math></span> at which giant components emerge among the defect edges.</div><div>We likewise prove the analogous results for the random graph <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> conditioned on triangle-freeness.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110499"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the evolution of structure in triangle-free graphs\",\"authors\":\"Matthew Jenssen ,&nbsp;Will Perkins ,&nbsp;Aditya Potukuchi\",\"doi\":\"10.1016/j.aim.2025.110499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the typical structure and the number of triangle-free graphs with <em>n</em> vertices and <em>m</em> edges where <em>m</em> is large enough so that a typical triangle-free graph has a cut containing nearly all of its edges, but may not be bipartite.</div><div>Erdős, Kleitman, and Rothschild showed that almost every triangle-free graph is bipartite, which leads to an asymptotic formula for the number of triangle-free graphs on <em>n</em> vertices. Osthus, Prömel, and Taraz later showed that for <span><math><mi>m</mi><mo>≥</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo><mfrac><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></math></span>, almost every triangle-free graph on <em>n</em> vertices and <em>m</em> edges is bipartite, which likewise leads to an asymptotic formula for their number. Here we give a precise characterization of the distribution of edges within each part of the max cut of a uniformly chosen triangle-free graph <em>G</em> on <em>n</em> vertices and <em>m</em> edges, for a larger range of densities with <span><math><mi>m</mi><mo>=</mo><mi>Θ</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>. Using this characterization, we describe the evolution of the structure of typical triangle-free graphs as the density changes. We show that as the number of edges decreases below <span><math><mfrac><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></math></span>, the following structural changes occur in <em>G</em>:<ul><li><span>•</span><span><div>Isolated edges, then trees, then more complex subgraphs emerge as ‘defect edges’, the edges within the parts of a max cut of <em>G</em>. In fact, the distribution of defect edges is first that of independent Erdős-Rényi random graphs inside the parts, then that of independent exponential random graphs, conditioned on a small maximum degree and no triangles.</div></span></li><li><span>•</span><span><div>There is a sharp threshold for 3-colorability at <span><math><mi>m</mi><mo>∼</mo><mfrac><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></math></span> and a sharp threshold between 4-colorability and unbounded chromatic number at <span><math><mi>m</mi><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></math></span>.</div></span></li><li><span>•</span><span><div>Giant components emerge in the defect edges at <span><math><mi>m</mi><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></math></span>.</div></span></li></ul></div><div>We further use this structural characterization to prove asymptotic formulas for the number of triangle-free graphs with <em>n</em> vertices and <em>m</em> edges in this range of densities. The asymptotic formula exhibits a change in form around the threshold <span><math><mi>m</mi><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></math></span> at which giant components emerge among the defect edges.</div><div>We likewise prove the analogous results for the random graph <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> conditioned on triangle-freeness.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110499\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003974\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003974","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有n个顶点和m条边的无三角形图的典型结构和数量,其中m足够大,使得一个典型的无三角形图有一个包含几乎所有边的切面,但可能不是二部的。Erdős, Kleitman,和Rothschild证明了几乎所有的无三角形图都是二部的,这就得到了n个顶点上无三角形图数目的渐近公式。Osthus, Prömel,和Taraz后来证明,当m≥(1+ε)34n3/2log (n) n时,几乎每一个有n个顶点和m条边的无三角形图都是二部图,这同样得到了二部图数目的渐近公式。在这里,我们给出了在n个顶点和m条边上均匀选择的无三角形图G的最大切割的每个部分内边缘分布的精确表征,对于m=Θ(n3/2log (n))的更大密度范围。利用这一特性,我们描述了典型无三角形图的结构随密度变化的演变。我们表明,当边的数量减少到34n3/2log (n)以下时,G中发生了以下结构变化:•孤立的边,然后是树,然后是更复杂的子图作为“缺陷边”出现,在G的最大切割的部分内的边。事实上,缺陷边的分布首先是部分内的独立Erdős-Rényi随机图的分布,然后是独立指数随机图的分布,条件是最小的最大度和没有三角形。•在m ~ 24n3/2log (n)处存在3色性的明显阈值,在m ~ 14n3/2log (n)处存在4色性和无界色数之间的明显阈值。•在m ~ 14n3/2log (n)处缺陷边缘出现巨大分量。我们进一步利用这个结构表征,证明了在这个密度范围内n个顶点和m条边的无三角形图数目的渐近公式。渐近公式显示出在阈值m ~ 14n3/2log ln n附近的形式变化,在该阈值处,巨大的分量出现在缺陷边缘之间。我们同样证明了在无三角形条件下的随机图G(n,p)的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the evolution of structure in triangle-free graphs
We study the typical structure and the number of triangle-free graphs with n vertices and m edges where m is large enough so that a typical triangle-free graph has a cut containing nearly all of its edges, but may not be bipartite.
Erdős, Kleitman, and Rothschild showed that almost every triangle-free graph is bipartite, which leads to an asymptotic formula for the number of triangle-free graphs on n vertices. Osthus, Prömel, and Taraz later showed that for m(1+ε)34n3/2logn, almost every triangle-free graph on n vertices and m edges is bipartite, which likewise leads to an asymptotic formula for their number. Here we give a precise characterization of the distribution of edges within each part of the max cut of a uniformly chosen triangle-free graph G on n vertices and m edges, for a larger range of densities with m=Θ(n3/2logn). Using this characterization, we describe the evolution of the structure of typical triangle-free graphs as the density changes. We show that as the number of edges decreases below 34n3/2logn, the following structural changes occur in G:
  • Isolated edges, then trees, then more complex subgraphs emerge as ‘defect edges’, the edges within the parts of a max cut of G. In fact, the distribution of defect edges is first that of independent Erdős-Rényi random graphs inside the parts, then that of independent exponential random graphs, conditioned on a small maximum degree and no triangles.
  • There is a sharp threshold for 3-colorability at m24n3/2logn and a sharp threshold between 4-colorability and unbounded chromatic number at m14n3/2logn.
  • Giant components emerge in the defect edges at m14n3/2logn.
We further use this structural characterization to prove asymptotic formulas for the number of triangle-free graphs with n vertices and m edges in this range of densities. The asymptotic formula exhibits a change in form around the threshold m14n3/2logn at which giant components emerge among the defect edges.
We likewise prove the analogous results for the random graph G(n,p) conditioned on triangle-freeness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信