通过集成特征优化和集成学习实现客户保留的自适应分析框架

Rahmad B.Y. Syah , Marischa Elveny
{"title":"通过集成特征优化和集成学习实现客户保留的自适应分析框架","authors":"Rahmad B.Y. Syah ,&nbsp;Marischa Elveny","doi":"10.1016/j.dajour.2025.100626","DOIUrl":null,"url":null,"abstract":"<div><div>An adaptive analytics workflow is presented for customer churn prediction, combining Principal Component Analysis for dimensionality reduction, a hybrid Modified Particle Swarm Gravitational Search Optimization (MPSO-GSO) for feature selection and hyperparameter tuning, and an ensemble learning stage combining XGBoost and LightGBM through weighted voting. Applied to an e-commerce dataset, the complete framework achieves AUC = 0.99 and accuracy = 0.98, outperforming standalone XGBoost (AUC = 0.98) and LightGBM (AUC = 0.97). Stratified 5-fold cross-validation and paired t-tests confirm the statistical significance of this improvement (p &lt; 0.01). Subsequent SHAP analysis interprets the feature contributions, demonstrating that this integrative, optimization-based approach substantially improves the quality of churn prediction.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"16 ","pages":"Article 100626"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive analytics framework for customer retention through integrative feature optimization and ensemble learning\",\"authors\":\"Rahmad B.Y. Syah ,&nbsp;Marischa Elveny\",\"doi\":\"10.1016/j.dajour.2025.100626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An adaptive analytics workflow is presented for customer churn prediction, combining Principal Component Analysis for dimensionality reduction, a hybrid Modified Particle Swarm Gravitational Search Optimization (MPSO-GSO) for feature selection and hyperparameter tuning, and an ensemble learning stage combining XGBoost and LightGBM through weighted voting. Applied to an e-commerce dataset, the complete framework achieves AUC = 0.99 and accuracy = 0.98, outperforming standalone XGBoost (AUC = 0.98) and LightGBM (AUC = 0.97). Stratified 5-fold cross-validation and paired t-tests confirm the statistical significance of this improvement (p &lt; 0.01). Subsequent SHAP analysis interprets the feature contributions, demonstrating that this integrative, optimization-based approach substantially improves the quality of churn prediction.</div></div>\",\"PeriodicalId\":100357,\"journal\":{\"name\":\"Decision Analytics Journal\",\"volume\":\"16 \",\"pages\":\"Article 100626\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Analytics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772662225000827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种结合主成分分析进行降维的客户流失预测自适应分析工作流程,一种混合改进粒子群引力搜索优化(MPSO-GSO)进行特征选择和超参数调整,以及一种结合XGBoost和LightGBM进行加权投票的集成学习阶段。应用于电子商务数据集,完整框架的AUC = 0.99,准确率= 0.98,优于独立的XGBoost (AUC = 0.98)和LightGBM (AUC = 0.97)。分层5重交叉验证和配对t检验证实了这种改善的统计学意义(p < 0.01)。随后的SHAP分析解释了特征贡献,证明了这种基于优化的综合方法大大提高了客户流失预测的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive analytics framework for customer retention through integrative feature optimization and ensemble learning
An adaptive analytics workflow is presented for customer churn prediction, combining Principal Component Analysis for dimensionality reduction, a hybrid Modified Particle Swarm Gravitational Search Optimization (MPSO-GSO) for feature selection and hyperparameter tuning, and an ensemble learning stage combining XGBoost and LightGBM through weighted voting. Applied to an e-commerce dataset, the complete framework achieves AUC = 0.99 and accuracy = 0.98, outperforming standalone XGBoost (AUC = 0.98) and LightGBM (AUC = 0.97). Stratified 5-fold cross-validation and paired t-tests confirm the statistical significance of this improvement (p < 0.01). Subsequent SHAP analysis interprets the feature contributions, demonstrating that this integrative, optimization-based approach substantially improves the quality of churn prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信