求助PDF
{"title":"用关界肯定解Bourgain的切片问题","authors":"Boaz Klartag, Joseph Lehec","doi":"10.1007/s00039-025-00718-w","DOIUrl":null,"url":null,"abstract":"<p>We provide the final step in the resolution of Bourgain’s slicing problem in the affirmative. Thus we establish the following theorem: for any convex body <span><span style=\"\">K \\subseteq \\mathbb{R}^{n}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 3470.7 995.9\" width=\"8.061ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4B\" y=\"0\"></use><use x=\"1167\" xlink:href=\"#MJMAIN-2286\" y=\"0\"></use><g transform=\"translate(2223,0)\"><use x=\"0\" xlink:href=\"#MJAMS-52\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1021\" xlink:href=\"#MJMATHI-6E\" y=\"581\"></use></g></g></svg></span><script type=\"math/tex\">K \\subseteq \\mathbb{R}^{n}</script></span> of volume one, there exists a hyperplane <span><span style=\"\">H \\subseteq \\mathbb{R}^{n}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -777 3469.7 994.3\" width=\"8.059ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use><use x=\"1166\" xlink:href=\"#MJMAIN-2286\" y=\"0\"></use><g transform=\"translate(2222,0)\"><use x=\"0\" xlink:href=\"#MJAMS-52\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1021\" xlink:href=\"#MJMATHI-6E\" y=\"581\"></use></g></g></svg></span><script type=\"math/tex\">H \\subseteq \\mathbb{R}^{n}</script></span> such that </p><span><span style=\"\"> Vol_{n-1}(K \\cap H) > c, </span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 8697.5 1125.3\" width=\"20.201ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-56\" y=\"0\"></use><use x=\"769\" xlink:href=\"#MJMATHI-6F\" y=\"0\"></use><g transform=\"translate(1255,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6C\" y=\"0\"></use><g transform=\"translate(298,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1379\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></g><use x=\"2982\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"3372\" xlink:href=\"#MJMATHI-4B\" y=\"0\"></use><use x=\"4483\" xlink:href=\"#MJMAIN-2229\" y=\"0\"></use><use x=\"5373\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use><use x=\"6261\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"6929\" xlink:href=\"#MJMAIN-3E\" y=\"0\"></use><use x=\"7985\" xlink:href=\"#MJMATHI-63\" y=\"0\"></use><use x=\"8419\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use></g></svg></span><script type=\"math/tex; mode=display\"> Vol_{n-1}(K \\cap H) > c, </script></span><p> where <span><span style=\"\">c > 0</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 2268.1 823.4\" width=\"5.268ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-63\" y=\"0\"></use><use x=\"711\" xlink:href=\"#MJMAIN-3E\" y=\"0\"></use><use x=\"1767\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">c > 0</script></span> is a universal constant. Our proof combines Milman’s theory of <span><span style=\"\">M</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 1051.5 823.4\" width=\"2.442ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4D\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">M</script></span>-ellipsoids, stochastic localization with a recent bound by Guan, and stability estimates for the Shannon-Stam inequality by Eldan and Mikulincer.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"28 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affirmative Resolution of Bourgain’s Slicing Problem Using Guan’s Bound\",\"authors\":\"Boaz Klartag, Joseph Lehec\",\"doi\":\"10.1007/s00039-025-00718-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide the final step in the resolution of Bourgain’s slicing problem in the affirmative. Thus we establish the following theorem: for any convex body <span><span style=\\\"\\\">K \\\\subseteq \\\\mathbb{R}^{n}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.313ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -778.3 3470.7 995.9\\\" width=\\\"8.061ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4B\\\" y=\\\"0\\\"></use><use x=\\\"1167\\\" xlink:href=\\\"#MJMAIN-2286\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2223,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJAMS-52\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1021\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"581\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">K \\\\subseteq \\\\mathbb{R}^{n}</script></span> of volume one, there exists a hyperplane <span><span style=\\\"\\\">H \\\\subseteq \\\\mathbb{R}^{n}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.309ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -777 3469.7 994.3\\\" width=\\\"8.059ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-48\\\" y=\\\"0\\\"></use><use x=\\\"1166\\\" xlink:href=\\\"#MJMAIN-2286\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2222,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJAMS-52\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1021\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"581\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">H \\\\subseteq \\\\mathbb{R}^{n}</script></span> such that </p><span><span style=\\\"\\\"> Vol_{n-1}(K \\\\cap H) > c, </span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 8697.5 1125.3\\\" width=\\\"20.201ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-56\\\" y=\\\"0\\\"></use><use x=\\\"769\\\" xlink:href=\\\"#MJMATHI-6F\\\" y=\\\"0\\\"></use><g transform=\\\"translate(1255,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(298,-150)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"600\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1379\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use></g></g><use x=\\\"2982\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"3372\\\" xlink:href=\\\"#MJMATHI-4B\\\" y=\\\"0\\\"></use><use x=\\\"4483\\\" xlink:href=\\\"#MJMAIN-2229\\\" y=\\\"0\\\"></use><use x=\\\"5373\\\" xlink:href=\\\"#MJMATHI-48\\\" y=\\\"0\\\"></use><use x=\\\"6261\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"6929\\\" xlink:href=\\\"#MJMAIN-3E\\\" y=\\\"0\\\"></use><use x=\\\"7985\\\" xlink:href=\\\"#MJMATHI-63\\\" y=\\\"0\\\"></use><use x=\\\"8419\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex; mode=display\\\"> Vol_{n-1}(K \\\\cap H) > c, </script></span><p> where <span><span style=\\\"\\\">c > 0</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 2268.1 823.4\\\" width=\\\"5.268ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-63\\\" y=\\\"0\\\"></use><use x=\\\"711\\\" xlink:href=\\\"#MJMAIN-3E\\\" y=\\\"0\\\"></use><use x=\\\"1767\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">c > 0</script></span> is a universal constant. Our proof combines Milman’s theory of <span><span style=\\\"\\\">M</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 1051.5 823.4\\\" width=\\\"2.442ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">M</script></span>-ellipsoids, stochastic localization with a recent bound by Guan, and stability estimates for the Shannon-Stam inequality by Eldan and Mikulincer.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-025-00718-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-025-00718-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用