用关界肯定解Bourgain的切片问题

IF 2.5 1区 数学 Q1 MATHEMATICS
Boaz Klartag, Joseph Lehec
{"title":"用关界肯定解Bourgain的切片问题","authors":"Boaz Klartag, Joseph Lehec","doi":"10.1007/s00039-025-00718-w","DOIUrl":null,"url":null,"abstract":"<p>We provide the final step in the resolution of Bourgain’s slicing problem in the affirmative. Thus we establish the following theorem: for any convex body <span><span style=\"\">K \\subseteq \\mathbb{R}^{n}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 3470.7 995.9\" width=\"8.061ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4B\" y=\"0\"></use><use x=\"1167\" xlink:href=\"#MJMAIN-2286\" y=\"0\"></use><g transform=\"translate(2223,0)\"><use x=\"0\" xlink:href=\"#MJAMS-52\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1021\" xlink:href=\"#MJMATHI-6E\" y=\"581\"></use></g></g></svg></span><script type=\"math/tex\">K \\subseteq \\mathbb{R}^{n}</script></span> of volume one, there exists a hyperplane <span><span style=\"\">H \\subseteq \\mathbb{R}^{n}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -777 3469.7 994.3\" width=\"8.059ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use><use x=\"1166\" xlink:href=\"#MJMAIN-2286\" y=\"0\"></use><g transform=\"translate(2222,0)\"><use x=\"0\" xlink:href=\"#MJAMS-52\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1021\" xlink:href=\"#MJMATHI-6E\" y=\"581\"></use></g></g></svg></span><script type=\"math/tex\">H \\subseteq \\mathbb{R}^{n}</script></span> such that </p><span><span style=\"\"> Vol_{n-1}(K \\cap H) &gt; c, </span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 8697.5 1125.3\" width=\"20.201ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-56\" y=\"0\"></use><use x=\"769\" xlink:href=\"#MJMATHI-6F\" y=\"0\"></use><g transform=\"translate(1255,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6C\" y=\"0\"></use><g transform=\"translate(298,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1379\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></g><use x=\"2982\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"3372\" xlink:href=\"#MJMATHI-4B\" y=\"0\"></use><use x=\"4483\" xlink:href=\"#MJMAIN-2229\" y=\"0\"></use><use x=\"5373\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use><use x=\"6261\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"6929\" xlink:href=\"#MJMAIN-3E\" y=\"0\"></use><use x=\"7985\" xlink:href=\"#MJMATHI-63\" y=\"0\"></use><use x=\"8419\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use></g></svg></span><script type=\"math/tex; mode=display\"> Vol_{n-1}(K \\cap H) > c, </script></span><p> where <span><span style=\"\">c &gt; 0</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 2268.1 823.4\" width=\"5.268ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-63\" y=\"0\"></use><use x=\"711\" xlink:href=\"#MJMAIN-3E\" y=\"0\"></use><use x=\"1767\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">c > 0</script></span> is a universal constant. Our proof combines Milman’s theory of <span><span style=\"\">M</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 1051.5 823.4\" width=\"2.442ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4D\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">M</script></span>-ellipsoids, stochastic localization with a recent bound by Guan, and stability estimates for the Shannon-Stam inequality by Eldan and Mikulincer.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"28 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affirmative Resolution of Bourgain’s Slicing Problem Using Guan’s Bound\",\"authors\":\"Boaz Klartag, Joseph Lehec\",\"doi\":\"10.1007/s00039-025-00718-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide the final step in the resolution of Bourgain’s slicing problem in the affirmative. Thus we establish the following theorem: for any convex body <span><span style=\\\"\\\">K \\\\subseteq \\\\mathbb{R}^{n}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.313ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -778.3 3470.7 995.9\\\" width=\\\"8.061ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4B\\\" y=\\\"0\\\"></use><use x=\\\"1167\\\" xlink:href=\\\"#MJMAIN-2286\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2223,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJAMS-52\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1021\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"581\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">K \\\\subseteq \\\\mathbb{R}^{n}</script></span> of volume one, there exists a hyperplane <span><span style=\\\"\\\">H \\\\subseteq \\\\mathbb{R}^{n}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.309ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -777 3469.7 994.3\\\" width=\\\"8.059ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-48\\\" y=\\\"0\\\"></use><use x=\\\"1166\\\" xlink:href=\\\"#MJMAIN-2286\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2222,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJAMS-52\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1021\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"581\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">H \\\\subseteq \\\\mathbb{R}^{n}</script></span> such that </p><span><span style=\\\"\\\"> Vol_{n-1}(K \\\\cap H) &gt; c, </span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 8697.5 1125.3\\\" width=\\\"20.201ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-56\\\" y=\\\"0\\\"></use><use x=\\\"769\\\" xlink:href=\\\"#MJMATHI-6F\\\" y=\\\"0\\\"></use><g transform=\\\"translate(1255,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(298,-150)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"600\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1379\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use></g></g><use x=\\\"2982\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"3372\\\" xlink:href=\\\"#MJMATHI-4B\\\" y=\\\"0\\\"></use><use x=\\\"4483\\\" xlink:href=\\\"#MJMAIN-2229\\\" y=\\\"0\\\"></use><use x=\\\"5373\\\" xlink:href=\\\"#MJMATHI-48\\\" y=\\\"0\\\"></use><use x=\\\"6261\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"6929\\\" xlink:href=\\\"#MJMAIN-3E\\\" y=\\\"0\\\"></use><use x=\\\"7985\\\" xlink:href=\\\"#MJMATHI-63\\\" y=\\\"0\\\"></use><use x=\\\"8419\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex; mode=display\\\"> Vol_{n-1}(K \\\\cap H) > c, </script></span><p> where <span><span style=\\\"\\\">c &gt; 0</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 2268.1 823.4\\\" width=\\\"5.268ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-63\\\" y=\\\"0\\\"></use><use x=\\\"711\\\" xlink:href=\\\"#MJMAIN-3E\\\" y=\\\"0\\\"></use><use x=\\\"1767\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">c > 0</script></span> is a universal constant. Our proof combines Milman’s theory of <span><span style=\\\"\\\">M</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 1051.5 823.4\\\" width=\\\"2.442ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">M</script></span>-ellipsoids, stochastic localization with a recent bound by Guan, and stability estimates for the Shannon-Stam inequality by Eldan and Mikulincer.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-025-00718-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-025-00718-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了解决布尔甘切片问题的最后一步。因此,我们建立了以下定理:对于卷1的任意凸体K \subseteq \mathbb{R}^{n}K \subseteq \mathbb{R}^{n},存在一个超平面H \subseteq \mathbb{R}^{n}H \subseteq \mathbb{R}^{n}使得Vol_{n-1}(K \cap H) > c, Vol_{n-1}(K \cap H) bbb_c,其中c >; 0c > 0是一个泛常数。我们的证明结合了Milman的mm -椭球理论,Guan的随机局部化和最近的边界,以及Eldan和Mikulincer对Shannon-Stam不等式的稳定性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affirmative Resolution of Bourgain’s Slicing Problem Using Guan’s Bound

We provide the final step in the resolution of Bourgain’s slicing problem in the affirmative. Thus we establish the following theorem: for any convex body K \subseteq \mathbb{R}^{n} of volume one, there exists a hyperplane H \subseteq \mathbb{R}^{n} such that

Vol_{n-1}(K \cap H) > c,

where c > 0 is a universal constant. Our proof combines Milman’s theory of M-ellipsoids, stochastic localization with a recent bound by Guan, and stability estimates for the Shannon-Stam inequality by Eldan and Mikulincer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信