{"title":"Zipoy-Voorhees时空的引力俘获截面","authors":"Serzhan Momynov, Kuantay Boshkayev, Hernando Quevedo, Farida Belissarova, Anar Dalelkhankyzy, Aliya Taukenova, Ainur Urazalina, Daniya Utepova","doi":"10.1007/s10714-025-03426-w","DOIUrl":null,"url":null,"abstract":"<div><p>We consider geodesics of massive and massless test particles in the gravitational field of a static and axisymmetric compact object described by the quadrupolar metric (<i>q</i>-metric), which is the simplest generalization of the Schwarzschild metric, containing an independent quadrupole parameter <i>q</i>. We analyze the effective potential profile and calculate the orbital parameters and capture cross-sections of test particles in this spacetime. Moreover, we derive the explicit expression for the escape angle of photons as a function of the quadrupole parameter. All the results reduce in the corresponding limit of vanishing quadrupole to the well-known case of the Schwarzschild spacetime. We argue that our results could be used to investigate realistic compact objects such as white dwarfs and neutron stars.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitational capture cross-section in Zipoy-Voorhees spacetimes\",\"authors\":\"Serzhan Momynov, Kuantay Boshkayev, Hernando Quevedo, Farida Belissarova, Anar Dalelkhankyzy, Aliya Taukenova, Ainur Urazalina, Daniya Utepova\",\"doi\":\"10.1007/s10714-025-03426-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider geodesics of massive and massless test particles in the gravitational field of a static and axisymmetric compact object described by the quadrupolar metric (<i>q</i>-metric), which is the simplest generalization of the Schwarzschild metric, containing an independent quadrupole parameter <i>q</i>. We analyze the effective potential profile and calculate the orbital parameters and capture cross-sections of test particles in this spacetime. Moreover, we derive the explicit expression for the escape angle of photons as a function of the quadrupole parameter. All the results reduce in the corresponding limit of vanishing quadrupole to the well-known case of the Schwarzschild spacetime. We argue that our results could be used to investigate realistic compact objects such as white dwarfs and neutron stars.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"57 6\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-025-03426-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03426-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Gravitational capture cross-section in Zipoy-Voorhees spacetimes
We consider geodesics of massive and massless test particles in the gravitational field of a static and axisymmetric compact object described by the quadrupolar metric (q-metric), which is the simplest generalization of the Schwarzschild metric, containing an independent quadrupole parameter q. We analyze the effective potential profile and calculate the orbital parameters and capture cross-sections of test particles in this spacetime. Moreover, we derive the explicit expression for the escape angle of photons as a function of the quadrupole parameter. All the results reduce in the corresponding limit of vanishing quadrupole to the well-known case of the Schwarzschild spacetime. We argue that our results could be used to investigate realistic compact objects such as white dwarfs and neutron stars.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.