{"title":"扩展相空间中带电旋转黑弦的热力学","authors":"Hamid R. Bakhtiarizadeh","doi":"10.1007/s10714-025-03441-x","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the thermodynamics of asymptotically Anti-de Sitter charged and rotating black strings in extended phase space, in which the cosmological constant is interpreted as thermodynamic pressure and the thermodynamic volume is defined as its conjugate. We find the thermodynamic volume, the internal energy, and the Smarr law. We study the thermal stability and show that some of the solutions have positive specific heat, which makes them thermodynamically stable. We find, for the first time, there is a critical point for charged solutions which occurs at the point of divergence of specific heat at constant pressure. This supports the existence of a second-order phase transition analogous to the liquid-gas critical point in Van der Waals fluids. We also study the maximal efficiency of a Penrose process and find that an extremal rotating black string can have an efficiency of up to 50%. We also find the equation of state for uncharged solutions. By comparing with the liquid-gas system, we observe that there is not a critical behavior to coincide with those of the Van der Waals system.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 7","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamics of charged rotating black strings in extended phase space\",\"authors\":\"Hamid R. Bakhtiarizadeh\",\"doi\":\"10.1007/s10714-025-03441-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the thermodynamics of asymptotically Anti-de Sitter charged and rotating black strings in extended phase space, in which the cosmological constant is interpreted as thermodynamic pressure and the thermodynamic volume is defined as its conjugate. We find the thermodynamic volume, the internal energy, and the Smarr law. We study the thermal stability and show that some of the solutions have positive specific heat, which makes them thermodynamically stable. We find, for the first time, there is a critical point for charged solutions which occurs at the point of divergence of specific heat at constant pressure. This supports the existence of a second-order phase transition analogous to the liquid-gas critical point in Van der Waals fluids. We also study the maximal efficiency of a Penrose process and find that an extremal rotating black string can have an efficiency of up to 50%. We also find the equation of state for uncharged solutions. By comparing with the liquid-gas system, we observe that there is not a critical behavior to coincide with those of the Van der Waals system.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"57 7\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-025-03441-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03441-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Thermodynamics of charged rotating black strings in extended phase space
We investigate the thermodynamics of asymptotically Anti-de Sitter charged and rotating black strings in extended phase space, in which the cosmological constant is interpreted as thermodynamic pressure and the thermodynamic volume is defined as its conjugate. We find the thermodynamic volume, the internal energy, and the Smarr law. We study the thermal stability and show that some of the solutions have positive specific heat, which makes them thermodynamically stable. We find, for the first time, there is a critical point for charged solutions which occurs at the point of divergence of specific heat at constant pressure. This supports the existence of a second-order phase transition analogous to the liquid-gas critical point in Van der Waals fluids. We also study the maximal efficiency of a Penrose process and find that an extremal rotating black string can have an efficiency of up to 50%. We also find the equation of state for uncharged solutions. By comparing with the liquid-gas system, we observe that there is not a critical behavior to coincide with those of the Van der Waals system.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.