求助PDF
{"title":"格的均匀分布:从点集到序列","authors":"Damir Ferizović","doi":"10.1007/s10208-025-09706-w","DOIUrl":null,"url":null,"abstract":"<p>In this work we construct many sequences <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mi>&#x25FB;</mi></msubsup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.315ex\" role=\"img\" style=\"vertical-align: -1.207ex;\" viewbox=\"0 -907.7 3563.9 1427.2\" width=\"8.277ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"923\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><g transform=\"translate(1979,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"926\" xlink:href=\"#MJAMS-25A1\" y=\"488\"></use><g transform=\"translate(613,-327)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"429\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"708\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mi>◻</mi></msubsup></math></span></span><script type=\"math/tex\">S=S^\\Box _{b,d}</script></span> and <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mo>&#x229E;</mo></msubsup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.315ex\" role=\"img\" style=\"vertical-align: -1.207ex;\" viewbox=\"0 -907.7 3563.9 1427.2\" width=\"8.277ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"923\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><g transform=\"translate(1979,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"926\" xlink:href=\"#MJAMS-229E\" y=\"488\"></use><g transform=\"translate(613,-327)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"429\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"708\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mo>⊞</mo></msubsup></math></span></span><script type=\"math/tex\">S=S^\\boxplus _{b,d}</script></span> in the <i>d</i>-dimensional unit hypercube, which for <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>1</mn></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -778.3 2358.1 866.5\" width=\"5.477ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>1</mn></math></span></span><script type=\"math/tex\">d=1</script></span> are (generalized) van der Corput sequences or Niederreiter’s (0, 1)-sequences in base <i>b</i>, respectively. Further, we introduce the notion of <i>f</i>-subadditivity and use it to define discrepancy functions which subsume the notion of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi>p</mi></msup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 1137.5 823.4\" width=\"2.642ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"963\" xlink:href=\"#MJMATHI-70\" y=\"513\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi>p</mi></msup></math></span></span><script type=\"math/tex\">L^p</script></span>-discrepancy, Wasserstein <i>p</i>-distance, and many more methods to compare empirical measures to an underlying base measure. We will relate bounds for a given discrepancy function <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.009ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -777 855.5 865.1\" width=\"1.987ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJSCR-44\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow></math></span></span><script type=\"math/tex\">\\mathscr {D}</script></span> of the multiset of projected lattice sets (treated as empirical measures), <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mo stretchy=\"false\">(</mo><msup><mi>b</mi><mrow><mo>&#x2212;</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>d</mi></msup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.914ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -950.8 3979.8 1254.7\" width=\"9.244ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-50\" y=\"0\"></use><use x=\"751\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(1141,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><g transform=\"translate(429,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"778\" xlink:href=\"#MJMATHI-6D\" y=\"0\"></use></g></g><g transform=\"translate(2842,0)\"><use x=\"0\" xlink:href=\"#MJAMS-5A\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"943\" xlink:href=\"#MJMATHI-64\" y=\"581\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mo stretchy=\"false\">(</mo><msup><mi>b</mi><mrow><mo>−</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>d</mi></msup></math></span></span><script type=\"math/tex\">P(b^{-m}\\mathbb {Z}^d</script></span>), to bounds of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow><mo stretchy=\"false\">(</mo><msub><mi>E</mi><mrow><msub><mi>Z</mi><mi>N</mi></msub></mrow></msub><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 3471.3 1125.3\" width=\"8.062ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJSCR-44\" y=\"0\"></use><use x=\"855\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(1245,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-45\" y=\"0\"></use><g transform=\"translate(738,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-5A\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"966\" xlink:href=\"#MJMATHI-4E\" y=\"-213\"></use></g></g><use x=\"3081\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow><mo stretchy=\"false\">(</mo><msub><mi>E</mi><mrow><msub><mi>Z</mi><mi>N</mi></msub></mrow></msub><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">\\mathscr {D}(E_{Z_N})</script></span>, i.e. the initial segments of the sequence <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi><mo>=</mo><mi>P</mi><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 4233.6 1123.4\" width=\"9.833ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-5A\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"2057\" xlink:href=\"#MJMATHI-50\" y=\"0\"></use><use x=\"2809\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"3198\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"3844\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi><mo>=</mo><mi>P</mi><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">Z=P(S)</script></span> for any <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi><mo>&#x2208;</mo><mrow><mi mathvariant=\"double-struck\">N</mi></mrow></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.909ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -733.9 2834.1 822.1\" width=\"6.582ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4E\" y=\"0\"></use><use x=\"1166\" xlink:href=\"#MJMAIN-2208\" y=\"0\"></use><use x=\"2111\" xlink:href=\"#MJAMS-4E\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi><mo>∈</mo><mrow><mi mathvariant=\"double-struck\">N</mi></mrow></math></span></span><script type=\"math/tex\">N\\in \\mathbb {N}</script></span>. We show that this relation holds in any dimension <i>d</i> and for any map <i>P</i> defined on a hypercube, for which bounds on <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow><mo stretchy=\"false\">(</mo><msub><mi>E</mi><mrow><mi>P</mi><mo stretchy=\"false\">(</mo><msup><mi>b</mi><mrow><mo>&#x2212;</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>d</mi></msup><mo>+</mo><mi>v</mi><mo stretchy=\"false\">)</mo></mrow></msub><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.114ex\" role=\"img\" style=\"vertical-align: -1.207ex;\" viewbox=\"0 -821.4 6456.4 1340.9\" width=\"14.996ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJSCR-44\" y=\"0\"></use><use x=\"855\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(1245,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-45\" y=\"0\"></use><g transform=\"translate(738,-294)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-50\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"751\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(806,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><g transform=\"translate(303,298)\"><use transform=\"scale(0.5)\" x=\"0\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"778\" xlink:href=\"#MJMATHI-6D\" y=\"0\"></use></g></g><g transform=\"translate(2009,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJAMS-5A\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"943\" xlink:href=\"#MJMATHI-64\" y=\"581\"></use></g><use transform=\"scale(0.707)\" x=\"3979\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"4758\" xlink:href=\"#MJMATHI-76\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"5243\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></g><use x=\"6066\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">D</mi></mrow><mo stretchy=\"false\">(</mo><msub><mi>E</mi><mrow><mi>P</mi><mo stretchy=\"false\">(</mo><msup><mi>b</mi><mrow><mo>−</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>d</mi></msup><mo>+</mo><mi>v</mi><mo stretchy=\"false\">)</mo></mrow></msub><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">\\mathscr {D}(E_{P(b^{-m}\\mathbb {Z}^d+v)})</script></span> can be obtained. We apply this theorem in <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>1</mn></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -778.3 2358.1 866.5\" width=\"5.477ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>1</mn></math></span></span><script type=\"math/tex\">d=1</script></span> to obtain bounds for the <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi>p</mi></msup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 1137.5 823.4\" width=\"2.642ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"963\" xlink:href=\"#MJMATHI-70\" y=\"513\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi>p</mi></msup></math></span></span><script type=\"math/tex\">L^p</script></span>-discrepancy of van der Corput and Niederreiter (0,1) sequences in terms of digit sums for all <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&#x2264;</mo><mi mathvariant=\"normal\">&#x221E;</mi></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.605ex;\" viewbox=\"0 -733.9 4672.6 994.3\" width=\"10.853ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"778\" xlink:href=\"#MJMAIN-3C\" y=\"0\"></use><use x=\"1834\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use x=\"2615\" xlink:href=\"#MJMAIN-2264\" y=\"0\"></use><use x=\"3672\" xlink:href=\"#MJMAIN-221E\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi mathvariant=\"normal\">∞</mi></math></span></span><script type=\"math/tex\">0<p\\le \\infty </script></span>. In <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>2</mn></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.009ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -777 2358.1 865.1\" width=\"5.477ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>=</mo><mn>2</mn></math></span></span><script type=\"math/tex\">d=2</script></span> an application of our construction yields many sequences on the two-sphere, such that the initial segments <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Z</mi><mi>N</mi></msub></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.213ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -735.2 1411.8 952.8\" width=\"3.279ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-5A\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"966\" xlink:href=\"#MJMATHI-4E\" y=\"-213\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Z</mi><mi>N</mi></msub></math></span></span><script type=\"math/tex\">Z_N</script></span> have small <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi mathvariant=\"normal\">&#x221E;</mi></msup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 1489 823.4\" width=\"3.458ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"963\" xlink:href=\"#MJMAIN-221E\" y=\"513\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi mathvariant=\"normal\">∞</mi></msup></math></span></span><script type=\"math/tex\">L^\\infty </script></span>-discrepancy.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"38 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform Distribution via Lattices: From Point Sets to Sequences\",\"authors\":\"Damir Ferizović\",\"doi\":\"10.1007/s10208-025-09706-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work we construct many sequences <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mi>&#x25FB;</mi></msubsup></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.315ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.207ex;\\\" viewbox=\\\"0 -907.7 3563.9 1427.2\\\" width=\\\"8.277ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use x=\\\"923\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><g transform=\\\"translate(1979,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"926\\\" xlink:href=\\\"#MJAMS-25A1\\\" y=\\\"488\\\"></use><g transform=\\\"translate(613,-327)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-62\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"429\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"708\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mi>◻</mi></msubsup></math></span></span><script type=\\\"math/tex\\\">S=S^\\\\Box _{b,d}</script></span> and <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mo>&#x229E;</mo></msubsup></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.315ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.207ex;\\\" viewbox=\\\"0 -907.7 3563.9 1427.2\\\" width=\\\"8.277ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use x=\\\"923\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><g transform=\\\"translate(1979,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"926\\\" xlink:href=\\\"#MJAMS-229E\\\" y=\\\"488\\\"></use><g transform=\\\"translate(613,-327)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-62\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"429\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"708\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>S</mi><mo>=</mo><msubsup><mi>S</mi><mrow><mi>b</mi><mo>,</mo><mi>d</mi></mrow><mo>⊞</mo></msubsup></math></span></span><script type=\\\"math/tex\\\">S=S^\\\\boxplus _{b,d}</script></span> in the <i>d</i>-dimensional unit hypercube, which for <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi><mo>=</mo><mn>1</mn></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.013ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -778.3 2358.1 866.5\\\" width=\\\"5.477ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use><use x=\\\"801\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"1857\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi><mo>=</mo><mn>1</mn></math></span></span><script type=\\\"math/tex\\\">d=1</script></span> are (generalized) van der Corput sequences or Niederreiter’s (0, 1)-sequences in base <i>b</i>, respectively. Further, we introduce the notion of <i>f</i>-subadditivity and use it to define discrepancy functions which subsume the notion of <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>L</mi><mi>p</mi></msup></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 1137.5 823.4\\\" width=\\\"2.642ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4C\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"963\\\" xlink:href=\\\"#MJMATHI-70\\\" y=\\\"513\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>L</mi><mi>p</mi></msup></math></span></span><script type=\\\"math/tex\\\">L^p</script></span>-discrepancy, Wasserstein <i>p</i>-distance, and many more methods to compare empirical measures to an underlying base measure. We will relate bounds for a given discrepancy function <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">D</mi></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -777 855.5 865.1\\\" width=\\\"1.987ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJSCR-44\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">D</mi></mrow></math></span></span><script type=\\\"math/tex\\\">\\\\mathscr {D}</script></span> of the multiset of projected lattice sets (treated as empirical measures), <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>P</mi><mo stretchy=\\\"false\\\">(</mo><msup><mi>b</mi><mrow><mo>&#x2212;</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\\\"double-struck\\\">Z</mi></mrow><mi>d</mi></msup></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.914ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -950.8 3979.8 1254.7\\\" width=\\\"9.244ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-50\\\" y=\\\"0\\\"></use><use x=\\\"751\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><g transform=\\\"translate(1141,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-62\\\" y=\\\"0\\\"></use><g transform=\\\"translate(429,362)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"778\\\" xlink:href=\\\"#MJMATHI-6D\\\" y=\\\"0\\\"></use></g></g><g transform=\\\"translate(2842,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJAMS-5A\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"943\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"581\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>P</mi><mo stretchy=\\\"false\\\">(</mo><msup><mi>b</mi><mrow><mo>−</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\\\"double-struck\\\">Z</mi></mrow><mi>d</mi></msup></math></span></span><script type=\\\"math/tex\\\">P(b^{-m}\\\\mathbb {Z}^d</script></span>), to bounds of <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">D</mi></mrow><mo stretchy=\\\"false\\\">(</mo><msub><mi>E</mi><mrow><msub><mi>Z</mi><mi>N</mi></msub></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 3471.3 1125.3\\\" width=\\\"8.062ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJSCR-44\\\" y=\\\"0\\\"></use><use x=\\\"855\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><g transform=\\\"translate(1245,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-45\\\" y=\\\"0\\\"></use><g transform=\\\"translate(738,-150)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-5A\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.5)\\\" x=\\\"966\\\" xlink:href=\\\"#MJMATHI-4E\\\" y=\\\"-213\\\"></use></g></g><use x=\\\"3081\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">D</mi></mrow><mo stretchy=\\\"false\\\">(</mo><msub><mi>E</mi><mrow><msub><mi>Z</mi><mi>N</mi></msub></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span></span><script type=\\\"math/tex\\\">\\\\mathscr {D}(E_{Z_N})</script></span>, i.e. the initial segments of the sequence <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Z</mi><mo>=</mo><mi>P</mi><mo stretchy=\\\"false\\\">(</mo><mi>S</mi><mo stretchy=\\\"false\\\">)</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.609ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.705ex;\\\" viewbox=\\\"0 -820.1 4233.6 1123.4\\\" width=\\\"9.833ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-5A\\\" y=\\\"0\\\"></use><use x=\\\"1001\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"2057\\\" xlink:href=\\\"#MJMATHI-50\\\" y=\\\"0\\\"></use><use x=\\\"2809\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"3198\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use x=\\\"3844\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Z</mi><mo>=</mo><mi>P</mi><mo stretchy=\\\"false\\\">(</mo><mi>S</mi><mo stretchy=\\\"false\\\">)</mo></math></span></span><script type=\\\"math/tex\\\">Z=P(S)</script></span> for any <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>N</mi><mo>&#x2208;</mo><mrow><mi mathvariant=\\\"double-struck\\\">N</mi></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.909ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -733.9 2834.1 822.1\\\" width=\\\"6.582ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4E\\\" y=\\\"0\\\"></use><use x=\\\"1166\\\" xlink:href=\\\"#MJMAIN-2208\\\" y=\\\"0\\\"></use><use x=\\\"2111\\\" xlink:href=\\\"#MJAMS-4E\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>N</mi><mo>∈</mo><mrow><mi mathvariant=\\\"double-struck\\\">N</mi></mrow></math></span></span><script type=\\\"math/tex\\\">N\\\\in \\\\mathbb {N}</script></span>. We show that this relation holds in any dimension <i>d</i> and for any map <i>P</i> defined on a hypercube, for which bounds on <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">D</mi></mrow><mo stretchy=\\\"false\\\">(</mo><msub><mi>E</mi><mrow><mi>P</mi><mo stretchy=\\\"false\\\">(</mo><msup><mi>b</mi><mrow><mo>&#x2212;</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\\\"double-struck\\\">Z</mi></mrow><mi>d</mi></msup><mo>+</mo><mi>v</mi><mo stretchy=\\\"false\\\">)</mo></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.114ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.207ex;\\\" viewbox=\\\"0 -821.4 6456.4 1340.9\\\" width=\\\"14.996ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJSCR-44\\\" y=\\\"0\\\"></use><use x=\\\"855\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><g transform=\\\"translate(1245,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-45\\\" y=\\\"0\\\"></use><g transform=\\\"translate(738,-294)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-50\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"751\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><g transform=\\\"translate(806,0)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-62\\\" y=\\\"0\\\"></use><g transform=\\\"translate(303,298)\\\"><use transform=\\\"scale(0.5)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.5)\\\" x=\\\"778\\\" xlink:href=\\\"#MJMATHI-6D\\\" y=\\\"0\\\"></use></g></g><g transform=\\\"translate(2009,0)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJAMS-5A\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.5)\\\" x=\\\"943\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"581\\\"></use></g><use transform=\\\"scale(0.707)\\\" x=\\\"3979\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"4758\\\" xlink:href=\\\"#MJMATHI-76\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"5243\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></g><use x=\\\"6066\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">D</mi></mrow><mo stretchy=\\\"false\\\">(</mo><msub><mi>E</mi><mrow><mi>P</mi><mo stretchy=\\\"false\\\">(</mo><msup><mi>b</mi><mrow><mo>−</mo><mi>m</mi></mrow></msup><msup><mrow><mi mathvariant=\\\"double-struck\\\">Z</mi></mrow><mi>d</mi></msup><mo>+</mo><mi>v</mi><mo stretchy=\\\"false\\\">)</mo></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span></span><script type=\\\"math/tex\\\">\\\\mathscr {D}(E_{P(b^{-m}\\\\mathbb {Z}^d+v)})</script></span> can be obtained. We apply this theorem in <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi><mo>=</mo><mn>1</mn></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.013ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -778.3 2358.1 866.5\\\" width=\\\"5.477ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use><use x=\\\"801\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"1857\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi><mo>=</mo><mn>1</mn></math></span></span><script type=\\\"math/tex\\\">d=1</script></span> to obtain bounds for the <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>L</mi><mi>p</mi></msup></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 1137.5 823.4\\\" width=\\\"2.642ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4C\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"963\\\" xlink:href=\\\"#MJMATHI-70\\\" y=\\\"513\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>L</mi><mi>p</mi></msup></math></span></span><script type=\\\"math/tex\\\">L^p</script></span>-discrepancy of van der Corput and Niederreiter (0,1) sequences in terms of digit sums for all <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&#x2264;</mo><mi mathvariant=\\\"normal\\\">&#x221E;</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.309ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.605ex;\\\" viewbox=\\\"0 -733.9 4672.6 994.3\\\" width=\\\"10.853ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use><use x=\\\"778\\\" xlink:href=\\\"#MJMAIN-3C\\\" y=\\\"0\\\"></use><use x=\\\"1834\\\" xlink:href=\\\"#MJMATHI-70\\\" y=\\\"0\\\"></use><use x=\\\"2615\\\" xlink:href=\\\"#MJMAIN-2264\\\" y=\\\"0\\\"></use><use x=\\\"3672\\\" xlink:href=\\\"#MJMAIN-221E\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>0</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi mathvariant=\\\"normal\\\">∞</mi></math></span></span><script type=\\\"math/tex\\\">0<p\\\\le \\\\infty </script></span>. In <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi><mo>=</mo><mn>2</mn></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -777 2358.1 865.1\\\" width=\\\"5.477ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use><use x=\\\"801\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"1857\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi><mo>=</mo><mn>2</mn></math></span></span><script type=\\\"math/tex\\\">d=2</script></span> an application of our construction yields many sequences on the two-sphere, such that the initial segments <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Z</mi><mi>N</mi></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.213ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -735.2 1411.8 952.8\\\" width=\\\"3.279ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-5A\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"966\\\" xlink:href=\\\"#MJMATHI-4E\\\" y=\\\"-213\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Z</mi><mi>N</mi></msub></math></span></span><script type=\\\"math/tex\\\">Z_N</script></span> have small <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>L</mi><mi mathvariant=\\\"normal\\\">&#x221E;</mi></msup></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 1489 823.4\\\" width=\\\"3.458ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4C\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"963\\\" xlink:href=\\\"#MJMAIN-221E\\\" y=\\\"513\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>L</mi><mi mathvariant=\\\"normal\\\">∞</mi></msup></math></span></span><script type=\\\"math/tex\\\">L^\\\\infty </script></span>-discrepancy.</p>\",\"PeriodicalId\":55151,\"journal\":{\"name\":\"Foundations of Computational Mathematics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-025-09706-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09706-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
引用
批量引用