基于广义列行选择的矩阵逼近的交错多项式方法

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Jian-Feng Cai, Zhiqiang Xu, Zili Xu
{"title":"基于广义列行选择的矩阵逼近的交错多项式方法","authors":"Jian-Feng Cai, Zhiqiang Xu, Zili Xu","doi":"10.1007/s10208-025-09719-5","DOIUrl":null,"url":null,"abstract":"<p>This paper delves into the spectral norm aspect of the Generalized Column and Row Subset Selection (GCRSS) problem. Given a target matrix <span><span>\\textbf{A}\\in \\mathbb {R}^{n\\times d}</span><script type=\"math/tex\">\\textbf{A}\\in \\mathbb {R}^{n\\times d}</script></span>, the objective of GCRSS is to select a column submatrix <span><span>\\textbf{B}_{:,S}\\in \\mathbb {R}^{n\\times k}</span><script type=\"math/tex\">\\textbf{B}_{:,S}\\in \\mathbb {R}^{n\\times k}</script></span> from the source matrix <span><span>\\textbf{B}\\in \\mathbb {R}^{n\\times d_B}</span><script type=\"math/tex\">\\textbf{B}\\in \\mathbb {R}^{n\\times d_B}</script></span> and a row submatrix <span><span>\\textbf{C}_{R,:}\\in \\mathbb {R}^{r\\times d}</span><script type=\"math/tex\">\\textbf{C}_{R,:}\\in \\mathbb {R}^{r\\times d}</script></span> from the source matrix <span><span>\\textbf{C}\\in \\mathbb {R}^{n_C\\times d}</span><script type=\"math/tex\">\\textbf{C}\\in \\mathbb {R}^{n_C\\times d}</script></span>, such that the residual matrix <span><span>(\\textbf{I}_n-\\textbf{B}_{:,S}\\textbf{B}_{:,S}^{\\dagger })\\textbf{A}(\\textbf{I}_d-\\textbf{C}_{R,:}^{\\dagger } \\textbf{C}_{R,:})</span><script type=\"math/tex\">(\\textbf{I}_n-\\textbf{B}_{:,S}\\textbf{B}_{:,S}^{\\dagger })\\textbf{A}(\\textbf{I}_d-\\textbf{C}_{R,:}^{\\dagger } \\textbf{C}_{R,:})</script></span> has a small spectral norm. By employing the method of interlacing polynomials, we show that the smallest possible spectral norm of a residual matrix can be bounded by the largest root of a related expected characteristic polynomial. A deterministic polynomial time algorithm is provided for the spectral norm case of the GCRSS problem. We next apply our results to two specific GCRSS scenarios, one where <span><span>r=0</span><script type=\"math/tex\">r=0</script></span>, simplifying the problem to the Generalized Column Subset Selection (GCSS) problem, and the other where <span><span>\\textbf{B}=\\textbf{C}=\\textbf{I}_d</span><script type=\"math/tex\">\\textbf{B}=\\textbf{C}=\\textbf{I}_d</script></span>, reducing the problem to the submatrix selection problem. In the GCSS scenario, we connect the expected characteristic polynomials to the convolution of multi-affine polynomials, leading to the derivation of the first provable reconstruction bound on the spectral norm of a residual matrix. In the submatrix selection scenario, we show that for any sufficiently small <span><span>\\varepsilon &gt;0</span><script type=\"math/tex\">\\varepsilon >0</script></span> and any square matrix <span><span>\\textbf{A}\\in \\mathbb {R}^{d\\times d}</span><script type=\"math/tex\">\\textbf{A}\\in \\mathbb {R}^{d\\times d}</script></span>, there exist two subsets <span><span>S\\subset [d]</span><script type=\"math/tex\">S\\subset [d]</script></span> and <span><span>R\\subset [d]</span><script type=\"math/tex\">R\\subset [d]</script></span> of sizes <span><span>O(d\\cdot \\varepsilon ^2)</span><script type=\"math/tex\">O(d\\cdot \\varepsilon ^2)</script></span> such that <span><span>\\Vert \\textbf{A}_{S,R}\\Vert _2\\le \\varepsilon \\cdot \\Vert \\textbf{A}\\Vert _2</span><script type=\"math/tex\">\\Vert \\textbf{A}_{S,R}\\Vert _2\\le \\varepsilon \\cdot \\Vert \\textbf{A}\\Vert _2</script></span>. Unlike previous studies that have produced comparable results for very special cases where the matrix is either a zero-diagonal or a positive semidefinite matrix, our results apply universally to any square matrix <span><span>\\textbf{A}</span><script type=\"math/tex\">\\textbf{A}</script></span>.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"18 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interlacing Polynomial Method for Matrix Approximation via Generalized Column and Row Selection\",\"authors\":\"Jian-Feng Cai, Zhiqiang Xu, Zili Xu\",\"doi\":\"10.1007/s10208-025-09719-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper delves into the spectral norm aspect of the Generalized Column and Row Subset Selection (GCRSS) problem. Given a target matrix <span><span>\\\\textbf{A}\\\\in \\\\mathbb {R}^{n\\\\times d}</span><script type=\\\"math/tex\\\">\\\\textbf{A}\\\\in \\\\mathbb {R}^{n\\\\times d}</script></span>, the objective of GCRSS is to select a column submatrix <span><span>\\\\textbf{B}_{:,S}\\\\in \\\\mathbb {R}^{n\\\\times k}</span><script type=\\\"math/tex\\\">\\\\textbf{B}_{:,S}\\\\in \\\\mathbb {R}^{n\\\\times k}</script></span> from the source matrix <span><span>\\\\textbf{B}\\\\in \\\\mathbb {R}^{n\\\\times d_B}</span><script type=\\\"math/tex\\\">\\\\textbf{B}\\\\in \\\\mathbb {R}^{n\\\\times d_B}</script></span> and a row submatrix <span><span>\\\\textbf{C}_{R,:}\\\\in \\\\mathbb {R}^{r\\\\times d}</span><script type=\\\"math/tex\\\">\\\\textbf{C}_{R,:}\\\\in \\\\mathbb {R}^{r\\\\times d}</script></span> from the source matrix <span><span>\\\\textbf{C}\\\\in \\\\mathbb {R}^{n_C\\\\times d}</span><script type=\\\"math/tex\\\">\\\\textbf{C}\\\\in \\\\mathbb {R}^{n_C\\\\times d}</script></span>, such that the residual matrix <span><span>(\\\\textbf{I}_n-\\\\textbf{B}_{:,S}\\\\textbf{B}_{:,S}^{\\\\dagger })\\\\textbf{A}(\\\\textbf{I}_d-\\\\textbf{C}_{R,:}^{\\\\dagger } \\\\textbf{C}_{R,:})</span><script type=\\\"math/tex\\\">(\\\\textbf{I}_n-\\\\textbf{B}_{:,S}\\\\textbf{B}_{:,S}^{\\\\dagger })\\\\textbf{A}(\\\\textbf{I}_d-\\\\textbf{C}_{R,:}^{\\\\dagger } \\\\textbf{C}_{R,:})</script></span> has a small spectral norm. By employing the method of interlacing polynomials, we show that the smallest possible spectral norm of a residual matrix can be bounded by the largest root of a related expected characteristic polynomial. A deterministic polynomial time algorithm is provided for the spectral norm case of the GCRSS problem. We next apply our results to two specific GCRSS scenarios, one where <span><span>r=0</span><script type=\\\"math/tex\\\">r=0</script></span>, simplifying the problem to the Generalized Column Subset Selection (GCSS) problem, and the other where <span><span>\\\\textbf{B}=\\\\textbf{C}=\\\\textbf{I}_d</span><script type=\\\"math/tex\\\">\\\\textbf{B}=\\\\textbf{C}=\\\\textbf{I}_d</script></span>, reducing the problem to the submatrix selection problem. In the GCSS scenario, we connect the expected characteristic polynomials to the convolution of multi-affine polynomials, leading to the derivation of the first provable reconstruction bound on the spectral norm of a residual matrix. In the submatrix selection scenario, we show that for any sufficiently small <span><span>\\\\varepsilon &gt;0</span><script type=\\\"math/tex\\\">\\\\varepsilon >0</script></span> and any square matrix <span><span>\\\\textbf{A}\\\\in \\\\mathbb {R}^{d\\\\times d}</span><script type=\\\"math/tex\\\">\\\\textbf{A}\\\\in \\\\mathbb {R}^{d\\\\times d}</script></span>, there exist two subsets <span><span>S\\\\subset [d]</span><script type=\\\"math/tex\\\">S\\\\subset [d]</script></span> and <span><span>R\\\\subset [d]</span><script type=\\\"math/tex\\\">R\\\\subset [d]</script></span> of sizes <span><span>O(d\\\\cdot \\\\varepsilon ^2)</span><script type=\\\"math/tex\\\">O(d\\\\cdot \\\\varepsilon ^2)</script></span> such that <span><span>\\\\Vert \\\\textbf{A}_{S,R}\\\\Vert _2\\\\le \\\\varepsilon \\\\cdot \\\\Vert \\\\textbf{A}\\\\Vert _2</span><script type=\\\"math/tex\\\">\\\\Vert \\\\textbf{A}_{S,R}\\\\Vert _2\\\\le \\\\varepsilon \\\\cdot \\\\Vert \\\\textbf{A}\\\\Vert _2</script></span>. Unlike previous studies that have produced comparable results for very special cases where the matrix is either a zero-diagonal or a positive semidefinite matrix, our results apply universally to any square matrix <span><span>\\\\textbf{A}</span><script type=\\\"math/tex\\\">\\\\textbf{A}</script></span>.</p>\",\"PeriodicalId\":55151,\"journal\":{\"name\":\"Foundations of Computational Mathematics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-025-09719-5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09719-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了广义列行子集选择(GCRSS)问题的谱范数。给定一个目标矩阵 \textbf{a}\in \mathbb {r}^{n\times d}\textbf{a}\in \mathbb {r}^{n\times d}, GCRSS的目标是选择一个列子矩阵 \textbf{b}_{:, s}\in \mathbb {r}^{n\times }\textbf{kB}_{:, s}\in \mathbb {r}^{n\times k} 从源矩阵 \textbf{b}\in \mathbb {r}^{n\times d_B}\textbf{b}\in \mathbb {r}^{n\times d_B} 一个行子矩阵 \textbf{c}_{r,:}\in \mathbb {r}^{r\times }\textbf{直流}_{r,:}\in \mathbb {r}^{r\times d} 从源矩阵 \textbf{c}\in \mathbb {r}^{n_C\times d}\textbf{c}\in \mathbb {r}^{n_C\times d},使得残差矩阵(\textbf{I}_n-\textbf{b}_{:,}\textbf{某人}_{:, s}^{\dagger })\textbf{a}(\textbf{I}_d-\textbf{c}_{r,:}^{\dagger } \textbf{c}_{r,:})(\textbf{I}_n-\textbf{b}_{:,}\textbf{某人}_{:, s}^{\dagger })\textbf{a}(\textbf{I}_d-\textbf{c}_{r,:}^{\dagger } \textbf{c}_{r,:})的谱范数较小。通过使用交错多项式的方法,我们证明了残差矩阵的最小可能谱范数可以被相关期望特征多项式的最大根所限定。针对GCRSS问题的谱范数情况,提出了一种确定性多项式时间算法。接下来,我们将我们的结果应用于两个特定的GCRSS场景,其中一个场景中r=0r=0,将问题简化为广义列子集选择(GCSS)问题,另一个场景中 \textbf{b}=\textbf{c}=\textbf{I}_\textbf{dB}=\textbf{c}=\textbf{I}_d,将问题简化为子矩阵选择问题。在GCSS场景中,我们将期望的特征多项式与多仿射多项式的卷积连接起来,从而推导出残差矩阵谱范数上的第一个可证明的重构界。在子矩阵选择场景中,我们证明了对于任何足够小的 \varepsilon &gt;0\varepsilon >0和任意方阵 \textbf{a}\in \mathbb {r}^{d\times d}\textbf{a}\in \mathbb {r}^{d\times d},则存在两个子集S\subset [d] d\subset [d]和[R]\subset [d]R\subset [d]大小的\cdot \varepsilon ^2 O(d\cdot \varepsilon ^2)这样 \Vert \textbf{a}_{s, r}\Vert _2\le \varepsilon \cdot \Vert \textbf{a}\Vert _2\Vert \textbf{a}_{s, r}\Vert _2\le \varepsilon \cdot \Vert \textbf{a}\Vert _2。不像以前的研究对矩阵是零对角线或正半定矩阵的非常特殊的情况产生了类似的结果,我们的结果普遍适用于任何方阵 \textbf{a}\textbf{a}.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interlacing Polynomial Method for Matrix Approximation via Generalized Column and Row Selection

This paper delves into the spectral norm aspect of the Generalized Column and Row Subset Selection (GCRSS) problem. Given a target matrix \textbf{A}\in \mathbb {R}^{n\times d}, the objective of GCRSS is to select a column submatrix \textbf{B}_{:,S}\in \mathbb {R}^{n\times k} from the source matrix \textbf{B}\in \mathbb {R}^{n\times d_B} and a row submatrix \textbf{C}_{R,:}\in \mathbb {R}^{r\times d} from the source matrix \textbf{C}\in \mathbb {R}^{n_C\times d}, such that the residual matrix (\textbf{I}_n-\textbf{B}_{:,S}\textbf{B}_{:,S}^{\dagger })\textbf{A}(\textbf{I}_d-\textbf{C}_{R,:}^{\dagger } \textbf{C}_{R,:}) has a small spectral norm. By employing the method of interlacing polynomials, we show that the smallest possible spectral norm of a residual matrix can be bounded by the largest root of a related expected characteristic polynomial. A deterministic polynomial time algorithm is provided for the spectral norm case of the GCRSS problem. We next apply our results to two specific GCRSS scenarios, one where r=0, simplifying the problem to the Generalized Column Subset Selection (GCSS) problem, and the other where \textbf{B}=\textbf{C}=\textbf{I}_d, reducing the problem to the submatrix selection problem. In the GCSS scenario, we connect the expected characteristic polynomials to the convolution of multi-affine polynomials, leading to the derivation of the first provable reconstruction bound on the spectral norm of a residual matrix. In the submatrix selection scenario, we show that for any sufficiently small \varepsilon >0 and any square matrix \textbf{A}\in \mathbb {R}^{d\times d}, there exist two subsets S\subset [d] and R\subset [d] of sizes O(d\cdot \varepsilon ^2) such that \Vert \textbf{A}_{S,R}\Vert _2\le \varepsilon \cdot \Vert \textbf{A}\Vert _2. Unlike previous studies that have produced comparable results for very special cases where the matrix is either a zero-diagonal or a positive semidefinite matrix, our results apply universally to any square matrix \textbf{A}.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信