{"title":"有限元外演算中的多辛性","authors":"Ari Stern, Enrico Zampa","doi":"10.1007/s10208-025-09720-y","DOIUrl":null,"url":null,"abstract":"<p>We consider the application of finite element exterior calculus (FEEC) methods to a class of canonical Hamiltonian PDE systems involving differential forms. Solutions to these systems satisfy a local <i>multisymplectic conservation law</i>, which generalizes the more familiar symplectic conservation law for Hamiltonian systems of ODEs, and which is connected with physically-important reciprocity phenomena, such as Lorentz reciprocity in electromagnetics. We characterize hybrid FEEC methods whose numerical traces satisfy a version of the multisymplectic conservation law, and we apply this characterization to several specific classes of FEEC methods, including conforming Arnold–Falk–Winther-type methods and various hybridizable discontinuous Galerkin (HDG) methods. Interestingly, the HDG-type and other nonconforming methods are shown, in general, to be multisymplectic in a stronger sense than the conforming FEEC methods. This substantially generalizes previous work of McLachlan and Stern [Found. Comput. Math., 20 (2020), pp. 35–69] on the more restricted class of canonical Hamiltonian PDEs in the de Donder–Weyl “grad-div” form.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"1 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multisymplecticity in Finite Element Exterior Calculus\",\"authors\":\"Ari Stern, Enrico Zampa\",\"doi\":\"10.1007/s10208-025-09720-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the application of finite element exterior calculus (FEEC) methods to a class of canonical Hamiltonian PDE systems involving differential forms. Solutions to these systems satisfy a local <i>multisymplectic conservation law</i>, which generalizes the more familiar symplectic conservation law for Hamiltonian systems of ODEs, and which is connected with physically-important reciprocity phenomena, such as Lorentz reciprocity in electromagnetics. We characterize hybrid FEEC methods whose numerical traces satisfy a version of the multisymplectic conservation law, and we apply this characterization to several specific classes of FEEC methods, including conforming Arnold–Falk–Winther-type methods and various hybridizable discontinuous Galerkin (HDG) methods. Interestingly, the HDG-type and other nonconforming methods are shown, in general, to be multisymplectic in a stronger sense than the conforming FEEC methods. This substantially generalizes previous work of McLachlan and Stern [Found. Comput. Math., 20 (2020), pp. 35–69] on the more restricted class of canonical Hamiltonian PDEs in the de Donder–Weyl “grad-div” form.</p>\",\"PeriodicalId\":55151,\"journal\":{\"name\":\"Foundations of Computational Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-025-09720-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09720-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Multisymplecticity in Finite Element Exterior Calculus
We consider the application of finite element exterior calculus (FEEC) methods to a class of canonical Hamiltonian PDE systems involving differential forms. Solutions to these systems satisfy a local multisymplectic conservation law, which generalizes the more familiar symplectic conservation law for Hamiltonian systems of ODEs, and which is connected with physically-important reciprocity phenomena, such as Lorentz reciprocity in electromagnetics. We characterize hybrid FEEC methods whose numerical traces satisfy a version of the multisymplectic conservation law, and we apply this characterization to several specific classes of FEEC methods, including conforming Arnold–Falk–Winther-type methods and various hybridizable discontinuous Galerkin (HDG) methods. Interestingly, the HDG-type and other nonconforming methods are shown, in general, to be multisymplectic in a stronger sense than the conforming FEEC methods. This substantially generalizes previous work of McLachlan and Stern [Found. Comput. Math., 20 (2020), pp. 35–69] on the more restricted class of canonical Hamiltonian PDEs in the de Donder–Weyl “grad-div” form.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.