有限元外演算中的多辛性

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Ari Stern, Enrico Zampa
{"title":"有限元外演算中的多辛性","authors":"Ari Stern, Enrico Zampa","doi":"10.1007/s10208-025-09720-y","DOIUrl":null,"url":null,"abstract":"<p>We consider the application of finite element exterior calculus (FEEC) methods to a class of canonical Hamiltonian PDE systems involving differential forms. Solutions to these systems satisfy a local <i>multisymplectic conservation law</i>, which generalizes the more familiar symplectic conservation law for Hamiltonian systems of ODEs, and which is connected with physically-important reciprocity phenomena, such as Lorentz reciprocity in electromagnetics. We characterize hybrid FEEC methods whose numerical traces satisfy a version of the multisymplectic conservation law, and we apply this characterization to several specific classes of FEEC methods, including conforming Arnold–Falk–Winther-type methods and various hybridizable discontinuous Galerkin (HDG) methods. Interestingly, the HDG-type and other nonconforming methods are shown, in general, to be multisymplectic in a stronger sense than the conforming FEEC methods. This substantially generalizes previous work of McLachlan and Stern [Found. Comput. Math., 20 (2020), pp. 35–69] on the more restricted class of canonical Hamiltonian PDEs in the de Donder–Weyl “grad-div” form.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"1 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multisymplecticity in Finite Element Exterior Calculus\",\"authors\":\"Ari Stern, Enrico Zampa\",\"doi\":\"10.1007/s10208-025-09720-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the application of finite element exterior calculus (FEEC) methods to a class of canonical Hamiltonian PDE systems involving differential forms. Solutions to these systems satisfy a local <i>multisymplectic conservation law</i>, which generalizes the more familiar symplectic conservation law for Hamiltonian systems of ODEs, and which is connected with physically-important reciprocity phenomena, such as Lorentz reciprocity in electromagnetics. We characterize hybrid FEEC methods whose numerical traces satisfy a version of the multisymplectic conservation law, and we apply this characterization to several specific classes of FEEC methods, including conforming Arnold–Falk–Winther-type methods and various hybridizable discontinuous Galerkin (HDG) methods. Interestingly, the HDG-type and other nonconforming methods are shown, in general, to be multisymplectic in a stronger sense than the conforming FEEC methods. This substantially generalizes previous work of McLachlan and Stern [Found. Comput. Math., 20 (2020), pp. 35–69] on the more restricted class of canonical Hamiltonian PDEs in the de Donder–Weyl “grad-div” form.</p>\",\"PeriodicalId\":55151,\"journal\":{\"name\":\"Foundations of Computational Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-025-09720-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09720-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类包含微分形式的正则哈密顿PDE系统的有限元外微积分方法的应用。这些系统的解满足一个局部多辛守恒定律,它推广了更熟悉的ODEs哈密顿系统的辛守恒定律,并且与物理上重要的互易现象有关,例如电磁学中的洛伦兹互易。我们描述了其数值迹线满足多辛守恒律的混合FEEC方法,并将这种描述应用于几种特定类型的FEEC方法,包括符合arnold - falk - winter型方法和各种可杂交不连续Galerkin (HDG)方法。有趣的是,hdg型和其他不符合的方法通常比符合的FEEC方法具有更强的多辛性。这在很大程度上概括了McLachlan和Stern之前的工作[发现]。第一版。数学。论文,20 (2020),pp. 35-69]在de Donder-Weyl“grad-div”形式下的更受限制的标准哈密顿偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multisymplecticity in Finite Element Exterior Calculus

We consider the application of finite element exterior calculus (FEEC) methods to a class of canonical Hamiltonian PDE systems involving differential forms. Solutions to these systems satisfy a local multisymplectic conservation law, which generalizes the more familiar symplectic conservation law for Hamiltonian systems of ODEs, and which is connected with physically-important reciprocity phenomena, such as Lorentz reciprocity in electromagnetics. We characterize hybrid FEEC methods whose numerical traces satisfy a version of the multisymplectic conservation law, and we apply this characterization to several specific classes of FEEC methods, including conforming Arnold–Falk–Winther-type methods and various hybridizable discontinuous Galerkin (HDG) methods. Interestingly, the HDG-type and other nonconforming methods are shown, in general, to be multisymplectic in a stronger sense than the conforming FEEC methods. This substantially generalizes previous work of McLachlan and Stern [Found. Comput. Math., 20 (2020), pp. 35–69] on the more restricted class of canonical Hamiltonian PDEs in the de Donder–Weyl “grad-div” form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信