改进的二阶凸最小化方法的全局性能保证

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Pavel Dvurechensky, Yurii Nesterov
{"title":"改进的二阶凸最小化方法的全局性能保证","authors":"Pavel Dvurechensky, Yurii Nesterov","doi":"10.1007/s10208-025-09726-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we attempt to compare two distinct branches of research on second-order optimization methods. The first one studies self-concordant functions and barriers, the main assumption being that the third derivative of the objective is bounded by the second derivative. The second branch studies cubic regularized Newton methods (CRNMs) with the main assumption that the second derivative is Lipschitz continuous. We develop a new theoretical analysis for a path-following scheme (PFS) for general self-concordant functions, as opposed to the classical path-following scheme developed for self-concordant barriers. We show that the complexity bound for this scheme is better than that of the Damped Newton Method (DNM) and show that our method has global superlinear convergence. We propose also a new predictor-corrector path-following scheme (PCPFS) that leads to further improvement of constant factors in the complexity guarantees for minimizing general self-concordant functions. We also apply path-following schemes to different classes of constrained optimization problems and obtain the resulting complexity bounds. Finally, we analyze an important subclass of general self-concordant functions, namely a class of strongly convex functions with Lipschitz continuous second derivative, and show that for this subclass CRNMs give even better complexity bounds.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"14 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved global performance guarantees of second-order methods in convex minimization\",\"authors\":\"Pavel Dvurechensky, Yurii Nesterov\",\"doi\":\"10.1007/s10208-025-09726-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we attempt to compare two distinct branches of research on second-order optimization methods. The first one studies self-concordant functions and barriers, the main assumption being that the third derivative of the objective is bounded by the second derivative. The second branch studies cubic regularized Newton methods (CRNMs) with the main assumption that the second derivative is Lipschitz continuous. We develop a new theoretical analysis for a path-following scheme (PFS) for general self-concordant functions, as opposed to the classical path-following scheme developed for self-concordant barriers. We show that the complexity bound for this scheme is better than that of the Damped Newton Method (DNM) and show that our method has global superlinear convergence. We propose also a new predictor-corrector path-following scheme (PCPFS) that leads to further improvement of constant factors in the complexity guarantees for minimizing general self-concordant functions. We also apply path-following schemes to different classes of constrained optimization problems and obtain the resulting complexity bounds. Finally, we analyze an important subclass of general self-concordant functions, namely a class of strongly convex functions with Lipschitz continuous second derivative, and show that for this subclass CRNMs give even better complexity bounds.</p>\",\"PeriodicalId\":55151,\"journal\":{\"name\":\"Foundations of Computational Mathematics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-025-09726-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09726-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们试图比较二阶优化方法的两个不同的研究分支。第一类研究自协调函数和障碍,主要假设目标的三阶导数有二阶导数的界。第二个分支研究三次正则牛顿方法(CRNMs),主要假设二阶导数为Lipschitz连续。本文提出了一种新的理论分析方法,用于一般自协调函数的路径跟踪格式(PFS),而不是针对自协调障碍开发的经典路径跟踪格式。证明了该方案的复杂度界优于阻尼牛顿法(DNM),并证明了该方案具有全局超线性收敛性。我们还提出了一种新的预测校正路径跟踪方案(PCPFS),该方案进一步改进了最小化一般自调和函数的复杂性保证中的常数因子。我们还将路径跟踪方案应用于不同类型的约束优化问题,并得到了结果的复杂度界。最后,我们分析了一般自洽函数的一个重要子类,即一类具有Lipschitz连续二阶导数的强凸函数,并证明了对于该类,crnm给出了更好的复杂度界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved global performance guarantees of second-order methods in convex minimization

In this paper, we attempt to compare two distinct branches of research on second-order optimization methods. The first one studies self-concordant functions and barriers, the main assumption being that the third derivative of the objective is bounded by the second derivative. The second branch studies cubic regularized Newton methods (CRNMs) with the main assumption that the second derivative is Lipschitz continuous. We develop a new theoretical analysis for a path-following scheme (PFS) for general self-concordant functions, as opposed to the classical path-following scheme developed for self-concordant barriers. We show that the complexity bound for this scheme is better than that of the Damped Newton Method (DNM) and show that our method has global superlinear convergence. We propose also a new predictor-corrector path-following scheme (PCPFS) that leads to further improvement of constant factors in the complexity guarantees for minimizing general self-concordant functions. We also apply path-following schemes to different classes of constrained optimization problems and obtain the resulting complexity bounds. Finally, we analyze an important subclass of general self-concordant functions, namely a class of strongly convex functions with Lipschitz continuous second derivative, and show that for this subclass CRNMs give even better complexity bounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信