双重正则化熵Wasserstein质心

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Lénaïc Chizat
{"title":"双重正则化熵Wasserstein质心","authors":"Lénaïc Chizat","doi":"10.1007/s10208-025-09724-8","DOIUrl":null,"url":null,"abstract":"<p>We study a general formulation of regularized Wasserstein barycenters that enjoy favorable regularity, approximation, stability and (grid-free) optimization properties. This barycenter is defined as the unique probability measure that minimizes the sum of entropic optimal transport (EOT) costs with respect to a family of given probability measures, plus an entropy term. We denote it the <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 2325.2 1125.3\" width=\"5.4ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"973\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1418\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1935\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">(\\lambda ,\\tau )</script></span>-barycenter, where <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -778.3 583.5 866.5\" width=\"1.355ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\lambda </script></span> is the inner regularization strength and <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.409ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -518.7 517.5 606.8\" width=\"1.202ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\tau </script></span> the outer one. This formulation recovers several previously proposed EOT barycenters for various choices of <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 3380.7 1039.1\" width=\"7.852ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"583\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1028\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"2880\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\lambda ,\\tau \\ge 0</script></span> and generalizes them. First, we show that, as <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.409ex\" role=\"img\" style=\"vertical-align: -0.605ex;\" viewbox=\"0 -777 3602.7 1037.3\" width=\"8.368ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"583\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1028\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-2192\" y=\"0\"></use><use x=\"3102\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\lambda , \\tau \\rightarrow 0</script></span>, regularizing doubly can <i>decrease</i> the approximation error compared to a single regularization. More specifically, we show that for smooth densities and the quadratic cost, the leading order term of the suboptimality in the (unregularized) Wasserstein barycenter objective cancels when <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.209ex\" role=\"img\" style=\"vertical-align: -1.005ex;\" viewbox=\"0 -949.2 2624.2 1381.8\" width=\"6.095ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"795\" xlink:href=\"#MJMAIN-223C\" y=\"0\"></use><g transform=\"translate(1573,0)\"><g transform=\"translate(397,0)\"><rect height=\"60\" stroke=\"none\" width=\"532\" x=\"0\" y=\"220\"></rect><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMATHI-3BB\" y=\"565\"></use><use transform=\"scale(0.707)\" x=\"126\" xlink:href=\"#MJMAIN-32\" y=\"-513\"></use></g></g></g></svg></span><script type=\"math/tex\">\\tau \\sim \\frac{\\lambda }{2}</script></span>. We discuss also this phenomenon for isotropic Gaussian distributions where all <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 2325.2 1125.3\" width=\"5.4ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"973\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1418\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1935\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">(\\lambda ,\\tau )</script></span>-barycenters have closed-form. Second, we show that for <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 3380.7 1039.1\" width=\"7.852ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"583\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1028\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-3E\" y=\"0\"></use><use x=\"2880\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\lambda ,\\tau >0</script></span>, this barycenter has a smooth density and is strongly stable under perturbation of the marginals. In particular, it can be estimated efficiently: given <i>n</i> samples from each of the probability measures, it converges in relative entropy to the population barycenter at a rate <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.409ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -949.2 2312.7 1037.3\" width=\"5.371ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><g transform=\"translate(600,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"778\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1279\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1779\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">n^{-1/2}</script></span>. Finally, this formulation is amenable to a grid-free optimization algorithm: we propose a simple Noisy Particle Gradient Descent method which, in the mean-field limit, converges globally at an exponential rate to the <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 2325.2 1123.4\" width=\"5.4ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"973\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1418\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1935\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">(\\lambda ,\\tau )</script></span>-barycenter.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"52 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doubly Regularized Entropic Wasserstein Barycenter\",\"authors\":\"Lénaïc Chizat\",\"doi\":\"10.1007/s10208-025-09724-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a general formulation of regularized Wasserstein barycenters that enjoy favorable regularity, approximation, stability and (grid-free) optimization properties. This barycenter is defined as the unique probability measure that minimizes the sum of entropic optimal transport (EOT) costs with respect to a family of given probability measures, plus an entropy term. We denote it the <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 2325.2 1125.3\\\" width=\\\"5.4ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"389\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use><use x=\\\"973\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1418\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"1935\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">(\\\\lambda ,\\\\tau )</script></span>-barycenter, where <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.013ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -778.3 583.5 866.5\\\" width=\\\"1.355ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\lambda </script></span> is the inner regularization strength and <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"1.409ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -518.7 517.5 606.8\\\" width=\\\"1.202ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\tau </script></span> the outer one. This formulation recovers several previously proposed EOT barycenters for various choices of <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.413ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.606ex;\\\" viewbox=\\\"0 -778.3 3380.7 1039.1\\\" width=\\\"7.852ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use><use x=\\\"583\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1028\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"1823\\\" xlink:href=\\\"#MJMAIN-2265\\\" y=\\\"0\\\"></use><use x=\\\"2880\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\lambda ,\\\\tau \\\\ge 0</script></span> and generalizes them. First, we show that, as <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.409ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.605ex;\\\" viewbox=\\\"0 -777 3602.7 1037.3\\\" width=\\\"8.368ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use><use x=\\\"583\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1028\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"1823\\\" xlink:href=\\\"#MJMAIN-2192\\\" y=\\\"0\\\"></use><use x=\\\"3102\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\lambda , \\\\tau \\\\rightarrow 0</script></span>, regularizing doubly can <i>decrease</i> the approximation error compared to a single regularization. More specifically, we show that for smooth densities and the quadratic cost, the leading order term of the suboptimality in the (unregularized) Wasserstein barycenter objective cancels when <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"3.209ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.005ex;\\\" viewbox=\\\"0 -949.2 2624.2 1381.8\\\" width=\\\"6.095ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"795\\\" xlink:href=\\\"#MJMAIN-223C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(1573,0)\\\"><g transform=\\\"translate(397,0)\\\"><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"532\\\" x=\\\"0\\\" y=\\\"220\\\"></rect><use transform=\\\"scale(0.707)\\\" x=\\\"84\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"565\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"126\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"-513\\\"></use></g></g></g></svg></span><script type=\\\"math/tex\\\">\\\\tau \\\\sim \\\\frac{\\\\lambda }{2}</script></span>. We discuss also this phenomenon for isotropic Gaussian distributions where all <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 2325.2 1125.3\\\" width=\\\"5.4ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"389\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use><use x=\\\"973\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1418\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"1935\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">(\\\\lambda ,\\\\tau )</script></span>-barycenters have closed-form. Second, we show that for <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.413ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.606ex;\\\" viewbox=\\\"0 -778.3 3380.7 1039.1\\\" width=\\\"7.852ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use><use x=\\\"583\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1028\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"1823\\\" xlink:href=\\\"#MJMAIN-3E\\\" y=\\\"0\\\"></use><use x=\\\"2880\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\lambda ,\\\\tau >0</script></span>, this barycenter has a smooth density and is strongly stable under perturbation of the marginals. In particular, it can be estimated efficiently: given <i>n</i> samples from each of the probability measures, it converges in relative entropy to the population barycenter at a rate <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.409ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -949.2 2312.7 1037.3\\\" width=\\\"5.371ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><g transform=\\\"translate(600,362)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"778\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1279\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1779\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">n^{-1/2}</script></span>. Finally, this formulation is amenable to a grid-free optimization algorithm: we propose a simple Noisy Particle Gradient Descent method which, in the mean-field limit, converges globally at an exponential rate to the <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.609ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.705ex;\\\" viewbox=\\\"0 -820.1 2325.2 1123.4\\\" width=\\\"5.4ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"389\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use><use x=\\\"973\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1418\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"1935\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">(\\\\lambda ,\\\\tau )</script></span>-barycenter.</p>\",\"PeriodicalId\":55151,\"journal\":{\"name\":\"Foundations of Computational Mathematics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-025-09724-8\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09724-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了正则化Wasserstein质心的一般公式,它具有良好的正则性、近似性、稳定性和(无网格)优化性质。这个重心被定义为唯一的概率度量,它使相对于一系列给定的概率度量的熵最优运输(EOT)成本的总和最小化,加上熵项。我们将其表示为(\lambda, \tau)-barycenter,其中\lambda是内部正则化强度,\tau是外部正则化强度。该公式恢复了先前提出的几种不同选择\lambda, \tau\ge 0的EOT重心,并对其进行了推广。首先,我们证明了\lambda, \tau\rightarrow 0,与单次正则化相比,二次正则化可以降低近似误差。更具体地说,我们表明,对于光滑密度和二次代价,(非正则化)Wasserstein重心目标的次优性的第一阶项在\tau\sim\frac{\lambda }{2}时抵消。我们还讨论了各向同性高斯分布中所有(\lambda, \tau)质心都具有封闭形式的这种现象。其次,我们证明了对于\lambda, \tau >0,该质心具有光滑的密度,并且在边缘扰动下具有很强的稳定性。特别是,它可以有效地估计:给定每个概率测量的n个样本,它以相对熵收敛于总体重心,速率为n^{-1/2}。最后,该公式适用于无网格优化算法:我们提出了一种简单的噪声粒子梯度下降方法,该方法在平均场极限下以指数速率全局收敛到(\lambda, \tau)-质心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Doubly Regularized Entropic Wasserstein Barycenter

We study a general formulation of regularized Wasserstein barycenters that enjoy favorable regularity, approximation, stability and (grid-free) optimization properties. This barycenter is defined as the unique probability measure that minimizes the sum of entropic optimal transport (EOT) costs with respect to a family of given probability measures, plus an entropy term. We denote it the -barycenter, where is the inner regularization strength and the outer one. This formulation recovers several previously proposed EOT barycenters for various choices of and generalizes them. First, we show that, as , regularizing doubly can decrease the approximation error compared to a single regularization. More specifically, we show that for smooth densities and the quadratic cost, the leading order term of the suboptimality in the (unregularized) Wasserstein barycenter objective cancels when . We discuss also this phenomenon for isotropic Gaussian distributions where all -barycenters have closed-form. Second, we show that for , this barycenter has a smooth density and is strongly stable under perturbation of the marginals. In particular, it can be estimated efficiently: given n samples from each of the probability measures, it converges in relative entropy to the population barycenter at a rate . Finally, this formulation is amenable to a grid-free optimization algorithm: we propose a simple Noisy Particle Gradient Descent method which, in the mean-field limit, converges globally at an exponential rate to the -barycenter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信