求助PDF
{"title":"双重正则化熵Wasserstein质心","authors":"Lénaïc Chizat","doi":"10.1007/s10208-025-09724-8","DOIUrl":null,"url":null,"abstract":"<p>We study a general formulation of regularized Wasserstein barycenters that enjoy favorable regularity, approximation, stability and (grid-free) optimization properties. This barycenter is defined as the unique probability measure that minimizes the sum of entropic optimal transport (EOT) costs with respect to a family of given probability measures, plus an entropy term. We denote it the <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 2325.2 1125.3\" width=\"5.4ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"973\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1418\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1935\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">(\\lambda ,\\tau )</script></span>-barycenter, where <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -778.3 583.5 866.5\" width=\"1.355ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\lambda </script></span> is the inner regularization strength and <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.409ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -518.7 517.5 606.8\" width=\"1.202ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\tau </script></span> the outer one. This formulation recovers several previously proposed EOT barycenters for various choices of <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 3380.7 1039.1\" width=\"7.852ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"583\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1028\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"2880\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\lambda ,\\tau \\ge 0</script></span> and generalizes them. First, we show that, as <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.409ex\" role=\"img\" style=\"vertical-align: -0.605ex;\" viewbox=\"0 -777 3602.7 1037.3\" width=\"8.368ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"583\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1028\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-2192\" y=\"0\"></use><use x=\"3102\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\lambda , \\tau \\rightarrow 0</script></span>, regularizing doubly can <i>decrease</i> the approximation error compared to a single regularization. More specifically, we show that for smooth densities and the quadratic cost, the leading order term of the suboptimality in the (unregularized) Wasserstein barycenter objective cancels when <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.209ex\" role=\"img\" style=\"vertical-align: -1.005ex;\" viewbox=\"0 -949.2 2624.2 1381.8\" width=\"6.095ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"795\" xlink:href=\"#MJMAIN-223C\" y=\"0\"></use><g transform=\"translate(1573,0)\"><g transform=\"translate(397,0)\"><rect height=\"60\" stroke=\"none\" width=\"532\" x=\"0\" y=\"220\"></rect><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMATHI-3BB\" y=\"565\"></use><use transform=\"scale(0.707)\" x=\"126\" xlink:href=\"#MJMAIN-32\" y=\"-513\"></use></g></g></g></svg></span><script type=\"math/tex\">\\tau \\sim \\frac{\\lambda }{2}</script></span>. We discuss also this phenomenon for isotropic Gaussian distributions where all <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 2325.2 1125.3\" width=\"5.4ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"973\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1418\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1935\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">(\\lambda ,\\tau )</script></span>-barycenters have closed-form. Second, we show that for <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 3380.7 1039.1\" width=\"7.852ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"583\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1028\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-3E\" y=\"0\"></use><use x=\"2880\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\lambda ,\\tau >0</script></span>, this barycenter has a smooth density and is strongly stable under perturbation of the marginals. In particular, it can be estimated efficiently: given <i>n</i> samples from each of the probability measures, it converges in relative entropy to the population barycenter at a rate <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.409ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -949.2 2312.7 1037.3\" width=\"5.371ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><g transform=\"translate(600,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"778\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1279\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1779\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">n^{-1/2}</script></span>. Finally, this formulation is amenable to a grid-free optimization algorithm: we propose a simple Noisy Particle Gradient Descent method which, in the mean-field limit, converges globally at an exponential rate to the <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 2325.2 1123.4\" width=\"5.4ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMATHI-3BB\" y=\"0\"></use><use x=\"973\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1418\" xlink:href=\"#MJMATHI-3C4\" y=\"0\"></use><use x=\"1935\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">(\\lambda ,\\tau )</script></span>-barycenter.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"52 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doubly Regularized Entropic Wasserstein Barycenter\",\"authors\":\"Lénaïc Chizat\",\"doi\":\"10.1007/s10208-025-09724-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a general formulation of regularized Wasserstein barycenters that enjoy favorable regularity, approximation, stability and (grid-free) optimization properties. This barycenter is defined as the unique probability measure that minimizes the sum of entropic optimal transport (EOT) costs with respect to a family of given probability measures, plus an entropy term. We denote it the <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 2325.2 1125.3\\\" width=\\\"5.4ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"389\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use><use x=\\\"973\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1418\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"1935\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">(\\\\lambda ,\\\\tau )</script></span>-barycenter, where <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.013ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -778.3 583.5 866.5\\\" width=\\\"1.355ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\lambda </script></span> is the inner regularization strength and <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"1.409ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -518.7 517.5 606.8\\\" width=\\\"1.202ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\tau </script></span> the outer one. This formulation recovers several previously proposed EOT barycenters for various choices of <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.413ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.606ex;\\\" viewbox=\\\"0 -778.3 3380.7 1039.1\\\" width=\\\"7.852ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use><use x=\\\"583\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1028\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"1823\\\" xlink:href=\\\"#MJMAIN-2265\\\" y=\\\"0\\\"></use><use x=\\\"2880\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\lambda ,\\\\tau \\\\ge 0</script></span> and generalizes them. First, we show that, as <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.409ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.605ex;\\\" viewbox=\\\"0 -777 3602.7 1037.3\\\" width=\\\"8.368ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use><use x=\\\"583\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1028\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"1823\\\" xlink:href=\\\"#MJMAIN-2192\\\" y=\\\"0\\\"></use><use x=\\\"3102\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\lambda , \\\\tau \\\\rightarrow 0</script></span>, regularizing doubly can <i>decrease</i> the approximation error compared to a single regularization. More specifically, we show that for smooth densities and the quadratic cost, the leading order term of the suboptimality in the (unregularized) Wasserstein barycenter objective cancels when <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"3.209ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.005ex;\\\" viewbox=\\\"0 -949.2 2624.2 1381.8\\\" width=\\\"6.095ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"795\\\" xlink:href=\\\"#MJMAIN-223C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(1573,0)\\\"><g transform=\\\"translate(397,0)\\\"><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"532\\\" x=\\\"0\\\" y=\\\"220\\\"></rect><use transform=\\\"scale(0.707)\\\" x=\\\"84\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"565\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"126\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"-513\\\"></use></g></g></g></svg></span><script type=\\\"math/tex\\\">\\\\tau \\\\sim \\\\frac{\\\\lambda }{2}</script></span>. We discuss also this phenomenon for isotropic Gaussian distributions where all <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 2325.2 1125.3\\\" width=\\\"5.4ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"389\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use><use x=\\\"973\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1418\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"1935\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">(\\\\lambda ,\\\\tau )</script></span>-barycenters have closed-form. Second, we show that for <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.413ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.606ex;\\\" viewbox=\\\"0 -778.3 3380.7 1039.1\\\" width=\\\"7.852ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use><use x=\\\"583\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1028\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"1823\\\" xlink:href=\\\"#MJMAIN-3E\\\" y=\\\"0\\\"></use><use x=\\\"2880\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\lambda ,\\\\tau >0</script></span>, this barycenter has a smooth density and is strongly stable under perturbation of the marginals. In particular, it can be estimated efficiently: given <i>n</i> samples from each of the probability measures, it converges in relative entropy to the population barycenter at a rate <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.409ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -949.2 2312.7 1037.3\\\" width=\\\"5.371ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><g transform=\\\"translate(600,362)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"778\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1279\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1779\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">n^{-1/2}</script></span>. Finally, this formulation is amenable to a grid-free optimization algorithm: we propose a simple Noisy Particle Gradient Descent method which, in the mean-field limit, converges globally at an exponential rate to the <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.609ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.705ex;\\\" viewbox=\\\"0 -820.1 2325.2 1123.4\\\" width=\\\"5.4ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"389\\\" xlink:href=\\\"#MJMATHI-3BB\\\" y=\\\"0\\\"></use><use x=\\\"973\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1418\\\" xlink:href=\\\"#MJMATHI-3C4\\\" y=\\\"0\\\"></use><use x=\\\"1935\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">(\\\\lambda ,\\\\tau )</script></span>-barycenter.</p>\",\"PeriodicalId\":55151,\"journal\":{\"name\":\"Foundations of Computational Mathematics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-025-09724-8\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09724-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
引用
批量引用