格拉斯曼曲率的简单矩阵表达式

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Zehua Lai, Lek-Heng Lim, Ke Ye
{"title":"格拉斯曼曲率的简单矩阵表达式","authors":"Zehua Lai, Lek-Heng Lim, Ke Ye","doi":"10.1007/s10208-025-09723-9","DOIUrl":null,"url":null,"abstract":"<p>We show that modeling a Grassmannian as symmetric orthogonal matrices <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mspace width=\"thinmathspace\" /&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;G&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace width=\"thinmathspace\" /&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi mathvariant=\"double-struck\"&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;&amp;#x2245;&lt;/mo&gt;&lt;mo fence=\"false\" stretchy=\"false\"&gt;{&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;&amp;#x2208;&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi mathvariant=\"double-struck\"&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;&amp;#x00D7;&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mrow&gt;&lt;mstyle displaystyle=\"false\" scriptlevel=\"2\"&gt;&lt;mrow&gt;&lt;mi mathvariant=\"sans-serif\"&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace width=\"thickmathspace\" /&gt;&lt;msup&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mrow&gt;&lt;mstyle displaystyle=\"false\" scriptlevel=\"2\"&gt;&lt;mrow&gt;&lt;mi mathvariant=\"sans-serif\"&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace width=\"thickmathspace\" /&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mspace width=\"thinmathspace\" /&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;t&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace width=\"thinmathspace\" /&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo fence=\"false\" stretchy=\"false\"&gt;}&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 27441.3 1125.3\" width=\"63.735ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g transform=\"translate(166,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-47\" y=\"0\"></use><use x=\"785\" xlink:href=\"#MJMAIN-72\" y=\"0\"></use></g><use x=\"1511\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"1900\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"2422\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(2867,0)\"><use x=\"0\" xlink:href=\"#MJAMS-52\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1021\" xlink:href=\"#MJMATHI-6E\" y=\"581\"></use></g><use x=\"4114\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"4781\" xlink:href=\"#MJMAIN-2245\" y=\"0\"></use><use x=\"5838\" xlink:href=\"#MJMAIN-7B\" y=\"0\"></use><use x=\"6338\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use x=\"7407\" xlink:href=\"#MJMAIN-2208\" y=\"0\"></use><g transform=\"translate(8353,0)\"><use x=\"0\" xlink:href=\"#MJAMS-52\" y=\"0\"></use><g transform=\"translate(722,410)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-D7\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1379\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use></g></g><use x=\"10853\" xlink:href=\"#MJMAIN-3A\" y=\"0\"></use><g transform=\"translate(11409,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"1582\" xlink:href=\"#MJSS-54\" y=\"725\"></use></g><use x=\"12641\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use x=\"13711\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"14767\" xlink:href=\"#MJMATHI-49\" y=\"0\"></use><use x=\"15271\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(15994,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"1582\" xlink:href=\"#MJSS-54\" y=\"725\"></use></g><use x=\"17504\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"18561\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use x=\"19352\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(20075,0)\"><g transform=\"translate(166,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-74\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMAIN-72\" y=\"0\"></use></g></g><use x=\"21190\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"21580\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use x=\"22371\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"23039\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"24095\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"24595\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"25339\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"26340\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"26940\" xlink:href=\"#MJMAIN-7D\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mspace width=\"thinmathspace\"></mspace><mrow><mi mathvariant=\"normal\">G</mi><mi mathvariant=\"normal\">r</mi></mrow><mspace width=\"thinmathspace\"></mspace></mrow></mrow><mo stretchy=\"false\">(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi mathvariant=\"double-struck\">R</mi></mrow><mi>n</mi></msup><mo stretchy=\"false\">)</mo><mo>≅</mo><mo fence=\"false\" stretchy=\"false\">{</mo><mi>Q</mi><mo>∈</mo><msup><mrow><mi mathvariant=\"double-struck\">R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mi>Q</mi><mrow><mstyle displaystyle=\"false\" scriptlevel=\"2\"><mrow><mi mathvariant=\"sans-serif\">T</mi></mrow></mstyle></mrow></msup><mi>Q</mi><mo>=</mo><mi>I</mi><mo>,</mo><mspace width=\"thickmathspace\"></mspace><msup><mi>Q</mi><mrow><mstyle displaystyle=\"false\" scriptlevel=\"2\"><mrow><mi mathvariant=\"sans-serif\">T</mi></mrow></mstyle></mrow></msup><mo>=</mo><mi>Q</mi><mo>,</mo><mspace width=\"thickmathspace\"></mspace><mrow><mrow><mspace width=\"thinmathspace\"></mspace><mrow><mi mathvariant=\"normal\">t</mi><mi mathvariant=\"normal\">r</mi></mrow><mspace width=\"thinmathspace\"></mspace></mrow></mrow><mo stretchy=\"false\">(</mo><mi>Q</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>2</mn><mi>k</mi><mo>−</mo><mi>n</mi><mo fence=\"false\" stretchy=\"false\">}</mo></math></span></span><script type=\"math/tex\">{{\\,\\textrm{Gr}\\,}}(k,\\mathbb {R}^n) \\cong \\{Q \\in \\mathbb {R}^{n \\times n} : Q^{\\scriptscriptstyle \\textsf{T}}Q = I, \\; Q^{\\scriptscriptstyle \\textsf{T}}= Q,\\; {{\\,\\textrm{tr}\\,}}(Q)=2k - n\\}</script></span> yields exceedingly simple matrix formulas for various curvatures and curvature-related quantities, both intrinsic and extrinsic. These include Riemann, Ricci, Jacobi, sectional, scalar, mean, principal, and Gaussian curvatures; Schouten, Weyl, Cotton, Bach, Plebański, cocurvature, nonmetricity, and torsion tensors; first, second, and third fundamental forms; Gauss and Weingarten maps; and upper and lower delta invariants. We will derive explicit, simple expressions for the aforementioned quantities in terms of standard matrix operations that are stably computable with numerical linear algebra. Many of these aforementioned quantities have never before been presented for the Grassmannian.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"23 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple matrix expressions for the curvatures of Grassmannian\",\"authors\":\"Zehua Lai, Lek-Heng Lim, Ke Ye\",\"doi\":\"10.1007/s10208-025-09723-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that modeling a Grassmannian as symmetric orthogonal matrices <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mspace width=\\\"thinmathspace\\\" /&gt;&lt;mrow&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;G&lt;/mi&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace width=\\\"thinmathspace\\\" /&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mo stretchy=\\\"false\\\"&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi mathvariant=\\\"double-struck\\\"&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msup&gt;&lt;mo stretchy=\\\"false\\\"&gt;)&lt;/mo&gt;&lt;mo&gt;&amp;#x2245;&lt;/mo&gt;&lt;mo fence=\\\"false\\\" stretchy=\\\"false\\\"&gt;{&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;&amp;#x2208;&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi mathvariant=\\\"double-struck\\\"&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;&amp;#x00D7;&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mrow&gt;&lt;mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"2\\\"&gt;&lt;mrow&gt;&lt;mi mathvariant=\\\"sans-serif\\\"&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace width=\\\"thickmathspace\\\" /&gt;&lt;msup&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mrow&gt;&lt;mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"2\\\"&gt;&lt;mrow&gt;&lt;mi mathvariant=\\\"sans-serif\\\"&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace width=\\\"thickmathspace\\\" /&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mspace width=\\\"thinmathspace\\\" /&gt;&lt;mrow&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;t&lt;/mi&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace width=\\\"thinmathspace\\\" /&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mo stretchy=\\\"false\\\"&gt;(&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo stretchy=\\\"false\\\"&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo fence=\\\"false\\\" stretchy=\\\"false\\\"&gt;}&lt;/mo&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 27441.3 1125.3\\\" width=\\\"63.735ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g transform=\\\"translate(166,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-47\\\" y=\\\"0\\\"></use><use x=\\\"785\\\" xlink:href=\\\"#MJMAIN-72\\\" y=\\\"0\\\"></use></g><use x=\\\"1511\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"1900\\\" xlink:href=\\\"#MJMATHI-6B\\\" y=\\\"0\\\"></use><use x=\\\"2422\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2867,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJAMS-52\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1021\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"581\\\"></use></g><use x=\\\"4114\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"4781\\\" xlink:href=\\\"#MJMAIN-2245\\\" y=\\\"0\\\"></use><use x=\\\"5838\\\" xlink:href=\\\"#MJMAIN-7B\\\" y=\\\"0\\\"></use><use x=\\\"6338\\\" xlink:href=\\\"#MJMATHI-51\\\" y=\\\"0\\\"></use><use x=\\\"7407\\\" xlink:href=\\\"#MJMAIN-2208\\\" y=\\\"0\\\"></use><g transform=\\\"translate(8353,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJAMS-52\\\" y=\\\"0\\\"></use><g transform=\\\"translate(722,410)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"600\\\" xlink:href=\\\"#MJMAIN-D7\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1379\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use></g></g><use x=\\\"10853\\\" xlink:href=\\\"#MJMAIN-3A\\\" y=\\\"0\\\"></use><g transform=\\\"translate(11409,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-51\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.5)\\\" x=\\\"1582\\\" xlink:href=\\\"#MJSS-54\\\" y=\\\"725\\\"></use></g><use x=\\\"12641\\\" xlink:href=\\\"#MJMATHI-51\\\" y=\\\"0\\\"></use><use x=\\\"13711\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"14767\\\" xlink:href=\\\"#MJMATHI-49\\\" y=\\\"0\\\"></use><use x=\\\"15271\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(15994,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-51\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.5)\\\" x=\\\"1582\\\" xlink:href=\\\"#MJSS-54\\\" y=\\\"725\\\"></use></g><use x=\\\"17504\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"18561\\\" xlink:href=\\\"#MJMATHI-51\\\" y=\\\"0\\\"></use><use x=\\\"19352\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(20075,0)\\\"><g transform=\\\"translate(166,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-74\\\" y=\\\"0\\\"></use><use x=\\\"389\\\" xlink:href=\\\"#MJMAIN-72\\\" y=\\\"0\\\"></use></g></g><use x=\\\"21190\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"21580\\\" xlink:href=\\\"#MJMATHI-51\\\" y=\\\"0\\\"></use><use x=\\\"22371\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"23039\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"24095\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"24595\\\" xlink:href=\\\"#MJMATHI-6B\\\" y=\\\"0\\\"></use><use x=\\\"25339\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use x=\\\"26340\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"26940\\\" xlink:href=\\\"#MJMAIN-7D\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mspace width=\\\"thinmathspace\\\"></mspace><mrow><mi mathvariant=\\\"normal\\\">G</mi><mi mathvariant=\\\"normal\\\">r</mi></mrow><mspace width=\\\"thinmathspace\\\"></mspace></mrow></mrow><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi mathvariant=\\\"double-struck\\\">R</mi></mrow><mi>n</mi></msup><mo stretchy=\\\"false\\\">)</mo><mo>≅</mo><mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mo><mi>Q</mi><mo>∈</mo><msup><mrow><mi mathvariant=\\\"double-struck\\\">R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mi>Q</mi><mrow><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"2\\\"><mrow><mi mathvariant=\\\"sans-serif\\\">T</mi></mrow></mstyle></mrow></msup><mi>Q</mi><mo>=</mo><mi>I</mi><mo>,</mo><mspace width=\\\"thickmathspace\\\"></mspace><msup><mi>Q</mi><mrow><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"2\\\"><mrow><mi mathvariant=\\\"sans-serif\\\">T</mi></mrow></mstyle></mrow></msup><mo>=</mo><mi>Q</mi><mo>,</mo><mspace width=\\\"thickmathspace\\\"></mspace><mrow><mrow><mspace width=\\\"thinmathspace\\\"></mspace><mrow><mi mathvariant=\\\"normal\\\">t</mi><mi mathvariant=\\\"normal\\\">r</mi></mrow><mspace width=\\\"thinmathspace\\\"></mspace></mrow></mrow><mo stretchy=\\\"false\\\">(</mo><mi>Q</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mn>2</mn><mi>k</mi><mo>−</mo><mi>n</mi><mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mo></math></span></span><script type=\\\"math/tex\\\">{{\\\\,\\\\textrm{Gr}\\\\,}}(k,\\\\mathbb {R}^n) \\\\cong \\\\{Q \\\\in \\\\mathbb {R}^{n \\\\times n} : Q^{\\\\scriptscriptstyle \\\\textsf{T}}Q = I, \\\\; Q^{\\\\scriptscriptstyle \\\\textsf{T}}= Q,\\\\; {{\\\\,\\\\textrm{tr}\\\\,}}(Q)=2k - n\\\\}</script></span> yields exceedingly simple matrix formulas for various curvatures and curvature-related quantities, both intrinsic and extrinsic. These include Riemann, Ricci, Jacobi, sectional, scalar, mean, principal, and Gaussian curvatures; Schouten, Weyl, Cotton, Bach, Plebański, cocurvature, nonmetricity, and torsion tensors; first, second, and third fundamental forms; Gauss and Weingarten maps; and upper and lower delta invariants. We will derive explicit, simple expressions for the aforementioned quantities in terms of standard matrix operations that are stably computable with numerical linear algebra. Many of these aforementioned quantities have never before been presented for the Grassmannian.</p>\",\"PeriodicalId\":55151,\"journal\":{\"name\":\"Foundations of Computational Mathematics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-025-09723-9\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09723-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了将Grassmannian建模为对称正交矩阵Gr(k,Rn) = {Q∈Rn×n:QTQ=I,QT=Q,tr(Q)=2k−n}{{\,\textrm{Gr}\,}}(k,\mathbb {R}^n) \cong \{Q \in \mathbb {R}^{n \times n}:Q ^{\scriptscriptstyle \textsf{T}}Q =I, \;Q^{\scriptscriptstyle \textsf{T}}= Q,\;{{\,\textrm{tr}\,}}(Q)=2k - n\}为各种曲率和曲率相关量(包括固有的和外在的)提供了非常简单的矩阵公式。这些包括黎曼曲率、里奇曲率、雅可比曲率、截面曲率、标量曲率、平均曲率、主曲率和高斯曲率;Schouten, Weyl, Cotton, Bach, Plebański,共曲率,非度量性和扭转张量;第一,第二,第三种基本形式;高斯和温加滕地图;上下不变量。我们将根据标准矩阵运算得出上述数量的显式,简单的表达式,这些矩阵运算可以用数值线性代数稳定地计算。前面提到的许多量以前从未为格拉斯曼提出过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple matrix expressions for the curvatures of Grassmannian

We show that modeling a Grassmannian as symmetric orthogonal matrices Gr(k,Rn){QRn×n:QTQ=I,QT=Q,tr(Q)=2kn} yields exceedingly simple matrix formulas for various curvatures and curvature-related quantities, both intrinsic and extrinsic. These include Riemann, Ricci, Jacobi, sectional, scalar, mean, principal, and Gaussian curvatures; Schouten, Weyl, Cotton, Bach, Plebański, cocurvature, nonmetricity, and torsion tensors; first, second, and third fundamental forms; Gauss and Weingarten maps; and upper and lower delta invariants. We will derive explicit, simple expressions for the aforementioned quantities in terms of standard matrix operations that are stably computable with numerical linear algebra. Many of these aforementioned quantities have never before been presented for the Grassmannian.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信