求助PDF
{"title":"格拉斯曼曲率的简单矩阵表达式","authors":"Zehua Lai, Lek-Heng Lim, Ke Ye","doi":"10.1007/s10208-025-09723-9","DOIUrl":null,"url":null,"abstract":"<p>We show that modeling a Grassmannian as symmetric orthogonal matrices <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mspace width=\"thinmathspace\" /><mrow><mi mathvariant=\"normal\">G</mi><mi mathvariant=\"normal\">r</mi></mrow><mspace width=\"thinmathspace\" /></mrow></mrow><mo stretchy=\"false\">(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi mathvariant=\"double-struck\">R</mi></mrow><mi>n</mi></msup><mo stretchy=\"false\">)</mo><mo>&#x2245;</mo><mo fence=\"false\" stretchy=\"false\">{</mo><mi>Q</mi><mo>&#x2208;</mo><msup><mrow><mi mathvariant=\"double-struck\">R</mi></mrow><mrow><mi>n</mi><mo>&#x00D7;</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mi>Q</mi><mrow><mstyle displaystyle=\"false\" scriptlevel=\"2\"><mrow><mi mathvariant=\"sans-serif\">T</mi></mrow></mstyle></mrow></msup><mi>Q</mi><mo>=</mo><mi>I</mi><mo>,</mo><mspace width=\"thickmathspace\" /><msup><mi>Q</mi><mrow><mstyle displaystyle=\"false\" scriptlevel=\"2\"><mrow><mi mathvariant=\"sans-serif\">T</mi></mrow></mstyle></mrow></msup><mo>=</mo><mi>Q</mi><mo>,</mo><mspace width=\"thickmathspace\" /><mrow><mrow><mspace width=\"thinmathspace\" /><mrow><mi mathvariant=\"normal\">t</mi><mi mathvariant=\"normal\">r</mi></mrow><mspace width=\"thinmathspace\" /></mrow></mrow><mo stretchy=\"false\">(</mo><mi>Q</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>2</mn><mi>k</mi><mo>&#x2212;</mo><mi>n</mi><mo fence=\"false\" stretchy=\"false\">}</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 27441.3 1125.3\" width=\"63.735ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g transform=\"translate(166,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-47\" y=\"0\"></use><use x=\"785\" xlink:href=\"#MJMAIN-72\" y=\"0\"></use></g><use x=\"1511\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"1900\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"2422\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(2867,0)\"><use x=\"0\" xlink:href=\"#MJAMS-52\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1021\" xlink:href=\"#MJMATHI-6E\" y=\"581\"></use></g><use x=\"4114\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"4781\" xlink:href=\"#MJMAIN-2245\" y=\"0\"></use><use x=\"5838\" xlink:href=\"#MJMAIN-7B\" y=\"0\"></use><use x=\"6338\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use x=\"7407\" xlink:href=\"#MJMAIN-2208\" y=\"0\"></use><g transform=\"translate(8353,0)\"><use x=\"0\" xlink:href=\"#MJAMS-52\" y=\"0\"></use><g transform=\"translate(722,410)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-D7\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1379\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use></g></g><use x=\"10853\" xlink:href=\"#MJMAIN-3A\" y=\"0\"></use><g transform=\"translate(11409,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"1582\" xlink:href=\"#MJSS-54\" y=\"725\"></use></g><use x=\"12641\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use x=\"13711\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"14767\" xlink:href=\"#MJMATHI-49\" y=\"0\"></use><use x=\"15271\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(15994,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"1582\" xlink:href=\"#MJSS-54\" y=\"725\"></use></g><use x=\"17504\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"18561\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use x=\"19352\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(20075,0)\"><g transform=\"translate(166,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-74\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMAIN-72\" y=\"0\"></use></g></g><use x=\"21190\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"21580\" xlink:href=\"#MJMATHI-51\" y=\"0\"></use><use x=\"22371\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"23039\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"24095\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"24595\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"25339\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"26340\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"26940\" xlink:href=\"#MJMAIN-7D\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mspace width=\"thinmathspace\"></mspace><mrow><mi mathvariant=\"normal\">G</mi><mi mathvariant=\"normal\">r</mi></mrow><mspace width=\"thinmathspace\"></mspace></mrow></mrow><mo stretchy=\"false\">(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi mathvariant=\"double-struck\">R</mi></mrow><mi>n</mi></msup><mo stretchy=\"false\">)</mo><mo>≅</mo><mo fence=\"false\" stretchy=\"false\">{</mo><mi>Q</mi><mo>∈</mo><msup><mrow><mi mathvariant=\"double-struck\">R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mi>Q</mi><mrow><mstyle displaystyle=\"false\" scriptlevel=\"2\"><mrow><mi mathvariant=\"sans-serif\">T</mi></mrow></mstyle></mrow></msup><mi>Q</mi><mo>=</mo><mi>I</mi><mo>,</mo><mspace width=\"thickmathspace\"></mspace><msup><mi>Q</mi><mrow><mstyle displaystyle=\"false\" scriptlevel=\"2\"><mrow><mi mathvariant=\"sans-serif\">T</mi></mrow></mstyle></mrow></msup><mo>=</mo><mi>Q</mi><mo>,</mo><mspace width=\"thickmathspace\"></mspace><mrow><mrow><mspace width=\"thinmathspace\"></mspace><mrow><mi mathvariant=\"normal\">t</mi><mi mathvariant=\"normal\">r</mi></mrow><mspace width=\"thinmathspace\"></mspace></mrow></mrow><mo stretchy=\"false\">(</mo><mi>Q</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>2</mn><mi>k</mi><mo>−</mo><mi>n</mi><mo fence=\"false\" stretchy=\"false\">}</mo></math></span></span><script type=\"math/tex\">{{\\,\\textrm{Gr}\\,}}(k,\\mathbb {R}^n) \\cong \\{Q \\in \\mathbb {R}^{n \\times n} : Q^{\\scriptscriptstyle \\textsf{T}}Q = I, \\; Q^{\\scriptscriptstyle \\textsf{T}}= Q,\\; {{\\,\\textrm{tr}\\,}}(Q)=2k - n\\}</script></span> yields exceedingly simple matrix formulas for various curvatures and curvature-related quantities, both intrinsic and extrinsic. These include Riemann, Ricci, Jacobi, sectional, scalar, mean, principal, and Gaussian curvatures; Schouten, Weyl, Cotton, Bach, Plebański, cocurvature, nonmetricity, and torsion tensors; first, second, and third fundamental forms; Gauss and Weingarten maps; and upper and lower delta invariants. We will derive explicit, simple expressions for the aforementioned quantities in terms of standard matrix operations that are stably computable with numerical linear algebra. Many of these aforementioned quantities have never before been presented for the Grassmannian.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"23 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple matrix expressions for the curvatures of Grassmannian\",\"authors\":\"Zehua Lai, Lek-Heng Lim, Ke Ye\",\"doi\":\"10.1007/s10208-025-09723-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that modeling a Grassmannian as symmetric orthogonal matrices <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mspace width=\\\"thinmathspace\\\" /><mrow><mi mathvariant=\\\"normal\\\">G</mi><mi mathvariant=\\\"normal\\\">r</mi></mrow><mspace width=\\\"thinmathspace\\\" /></mrow></mrow><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi mathvariant=\\\"double-struck\\\">R</mi></mrow><mi>n</mi></msup><mo stretchy=\\\"false\\\">)</mo><mo>&#x2245;</mo><mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mo><mi>Q</mi><mo>&#x2208;</mo><msup><mrow><mi mathvariant=\\\"double-struck\\\">R</mi></mrow><mrow><mi>n</mi><mo>&#x00D7;</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mi>Q</mi><mrow><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"2\\\"><mrow><mi mathvariant=\\\"sans-serif\\\">T</mi></mrow></mstyle></mrow></msup><mi>Q</mi><mo>=</mo><mi>I</mi><mo>,</mo><mspace width=\\\"thickmathspace\\\" /><msup><mi>Q</mi><mrow><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"2\\\"><mrow><mi mathvariant=\\\"sans-serif\\\">T</mi></mrow></mstyle></mrow></msup><mo>=</mo><mi>Q</mi><mo>,</mo><mspace width=\\\"thickmathspace\\\" /><mrow><mrow><mspace width=\\\"thinmathspace\\\" /><mrow><mi mathvariant=\\\"normal\\\">t</mi><mi mathvariant=\\\"normal\\\">r</mi></mrow><mspace width=\\\"thinmathspace\\\" /></mrow></mrow><mo stretchy=\\\"false\\\">(</mo><mi>Q</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mn>2</mn><mi>k</mi><mo>&#x2212;</mo><mi>n</mi><mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 27441.3 1125.3\\\" width=\\\"63.735ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g transform=\\\"translate(166,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-47\\\" y=\\\"0\\\"></use><use x=\\\"785\\\" xlink:href=\\\"#MJMAIN-72\\\" y=\\\"0\\\"></use></g><use x=\\\"1511\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"1900\\\" xlink:href=\\\"#MJMATHI-6B\\\" y=\\\"0\\\"></use><use x=\\\"2422\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2867,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJAMS-52\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1021\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"581\\\"></use></g><use x=\\\"4114\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"4781\\\" xlink:href=\\\"#MJMAIN-2245\\\" y=\\\"0\\\"></use><use x=\\\"5838\\\" xlink:href=\\\"#MJMAIN-7B\\\" y=\\\"0\\\"></use><use x=\\\"6338\\\" xlink:href=\\\"#MJMATHI-51\\\" y=\\\"0\\\"></use><use x=\\\"7407\\\" xlink:href=\\\"#MJMAIN-2208\\\" y=\\\"0\\\"></use><g transform=\\\"translate(8353,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJAMS-52\\\" y=\\\"0\\\"></use><g transform=\\\"translate(722,410)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"600\\\" xlink:href=\\\"#MJMAIN-D7\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1379\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use></g></g><use x=\\\"10853\\\" xlink:href=\\\"#MJMAIN-3A\\\" y=\\\"0\\\"></use><g transform=\\\"translate(11409,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-51\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.5)\\\" x=\\\"1582\\\" xlink:href=\\\"#MJSS-54\\\" y=\\\"725\\\"></use></g><use x=\\\"12641\\\" xlink:href=\\\"#MJMATHI-51\\\" y=\\\"0\\\"></use><use x=\\\"13711\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"14767\\\" xlink:href=\\\"#MJMATHI-49\\\" y=\\\"0\\\"></use><use x=\\\"15271\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(15994,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-51\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.5)\\\" x=\\\"1582\\\" xlink:href=\\\"#MJSS-54\\\" y=\\\"725\\\"></use></g><use x=\\\"17504\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"18561\\\" xlink:href=\\\"#MJMATHI-51\\\" y=\\\"0\\\"></use><use x=\\\"19352\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(20075,0)\\\"><g transform=\\\"translate(166,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-74\\\" y=\\\"0\\\"></use><use x=\\\"389\\\" xlink:href=\\\"#MJMAIN-72\\\" y=\\\"0\\\"></use></g></g><use x=\\\"21190\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"21580\\\" xlink:href=\\\"#MJMATHI-51\\\" y=\\\"0\\\"></use><use x=\\\"22371\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"23039\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"24095\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"24595\\\" xlink:href=\\\"#MJMATHI-6B\\\" y=\\\"0\\\"></use><use x=\\\"25339\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use x=\\\"26340\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"26940\\\" xlink:href=\\\"#MJMAIN-7D\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mspace width=\\\"thinmathspace\\\"></mspace><mrow><mi mathvariant=\\\"normal\\\">G</mi><mi mathvariant=\\\"normal\\\">r</mi></mrow><mspace width=\\\"thinmathspace\\\"></mspace></mrow></mrow><mo stretchy=\\\"false\\\">(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi mathvariant=\\\"double-struck\\\">R</mi></mrow><mi>n</mi></msup><mo stretchy=\\\"false\\\">)</mo><mo>≅</mo><mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mo><mi>Q</mi><mo>∈</mo><msup><mrow><mi mathvariant=\\\"double-struck\\\">R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mi>Q</mi><mrow><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"2\\\"><mrow><mi mathvariant=\\\"sans-serif\\\">T</mi></mrow></mstyle></mrow></msup><mi>Q</mi><mo>=</mo><mi>I</mi><mo>,</mo><mspace width=\\\"thickmathspace\\\"></mspace><msup><mi>Q</mi><mrow><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"2\\\"><mrow><mi mathvariant=\\\"sans-serif\\\">T</mi></mrow></mstyle></mrow></msup><mo>=</mo><mi>Q</mi><mo>,</mo><mspace width=\\\"thickmathspace\\\"></mspace><mrow><mrow><mspace width=\\\"thinmathspace\\\"></mspace><mrow><mi mathvariant=\\\"normal\\\">t</mi><mi mathvariant=\\\"normal\\\">r</mi></mrow><mspace width=\\\"thinmathspace\\\"></mspace></mrow></mrow><mo stretchy=\\\"false\\\">(</mo><mi>Q</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mn>2</mn><mi>k</mi><mo>−</mo><mi>n</mi><mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mo></math></span></span><script type=\\\"math/tex\\\">{{\\\\,\\\\textrm{Gr}\\\\,}}(k,\\\\mathbb {R}^n) \\\\cong \\\\{Q \\\\in \\\\mathbb {R}^{n \\\\times n} : Q^{\\\\scriptscriptstyle \\\\textsf{T}}Q = I, \\\\; Q^{\\\\scriptscriptstyle \\\\textsf{T}}= Q,\\\\; {{\\\\,\\\\textrm{tr}\\\\,}}(Q)=2k - n\\\\}</script></span> yields exceedingly simple matrix formulas for various curvatures and curvature-related quantities, both intrinsic and extrinsic. These include Riemann, Ricci, Jacobi, sectional, scalar, mean, principal, and Gaussian curvatures; Schouten, Weyl, Cotton, Bach, Plebański, cocurvature, nonmetricity, and torsion tensors; first, second, and third fundamental forms; Gauss and Weingarten maps; and upper and lower delta invariants. We will derive explicit, simple expressions for the aforementioned quantities in terms of standard matrix operations that are stably computable with numerical linear algebra. Many of these aforementioned quantities have never before been presented for the Grassmannian.</p>\",\"PeriodicalId\":55151,\"journal\":{\"name\":\"Foundations of Computational Mathematics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-025-09723-9\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09723-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
引用
批量引用