求助PDF
{"title":"齐次动力学多项式的素数定理","authors":"Giorgos Kotsovolis, Katharine Woo","doi":"10.1007/s00039-025-00716-y","DOIUrl":null,"url":null,"abstract":"<p>We establish a new class of examples of the multivariate Bateman-Horn conjecture by using tools from dynamics. These cases include the determinant polynomial on the space of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi><mo>&#x00D7;</mo><mi>n</mi></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.509ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -561.7 2423.9 649.8\" width=\"5.63ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"822\" xlink:href=\"#MJMAIN-D7\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi><mo>×</mo><mi>n</mi></math></span></span><script type=\"math/tex\">n\\times n</script></span> matrices, the Pfaffian on the space of skew-symmetric <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi>n</mi><mo>&#x00D7;</mo><mn>2</mn><mi>n</mi></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.909ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -733.9 3424.9 822.1\" width=\"7.955ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"500\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"1323\" xlink:href=\"#MJMAIN-D7\" y=\"0\"></use><use x=\"2323\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"2824\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi>n</mi><mo>×</mo><mn>2</mn><mi>n</mi></math></span></span><script type=\"math/tex\">2n\\times 2n</script></span> matrices, and the determinant polynomial on the space of symmetric <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi><mo>&#x00D7;</mo><mi>n</mi></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.512ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -562.7 2423.9 650.9\" width=\"5.63ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"822\" xlink:href=\"#MJMAIN-D7\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi><mo>×</mo><mi>n</mi></math></span></span><script type=\"math/tex\">n\\times n</script></span> matrices. In particular, let <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>V</mi><mo>,</mo><mi>F</mi><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 2743.2 1125.3\" width=\"6.371ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMATHI-56\" y=\"0\"></use><use x=\"1159\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1604\" xlink:href=\"#MJMATHI-46\" y=\"0\"></use><use x=\"2353\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>V</mi><mo>,</mo><mi>F</mi><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">(V,F)</script></span> be any pair among the following: <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">a</mi><mi mathvariant=\"normal\">t</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mo movablelimits=\"true\" form=\"prefix\">det</mo><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 4946.8 1125.3\" width=\"11.489ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(389,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-4D\" y=\"0\"></use><use x=\"917\" xlink:href=\"#MJMAIN-61\" y=\"0\"></use><use x=\"1418\" xlink:href=\"#MJMAIN-74\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2556\" xlink:href=\"#MJMATHI-6E\" y=\"-213\"></use></g><use x=\"2721\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(3166,0)\"><use xlink:href=\"#MJMAIN-64\"></use><use x=\"556\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-74\" y=\"0\"></use></g><use x=\"4557\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">a</mi><mi mathvariant=\"normal\">t</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mo form=\"prefix\" movablelimits=\"true\">det</mo><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">(\\textrm{Mat}_{n}, \\det )</script></span>, <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"normal\">S</mi><mi mathvariant=\"normal\">k</mi><mi mathvariant=\"normal\">e</mi><mi mathvariant=\"normal\">w</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>,</mo><mrow><mi mathvariant=\"normal\">P</mi><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">f</mi></mrow><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 5781.2 1125.3\" width=\"13.427ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(389,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-53\" y=\"0\"></use><use x=\"556\" xlink:href=\"#MJMAIN-6B\" y=\"0\"></use><use x=\"1085\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use><use x=\"1529\" xlink:href=\"#MJMAIN-77\" y=\"0\"></use><g transform=\"translate(2252,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use></g></g><use x=\"3520\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(3965,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-50\" y=\"0\"></use><use x=\"681\" xlink:href=\"#MJMAIN-66\" y=\"0\"></use><use x=\"1054\" xlink:href=\"#MJMAIN-66\" y=\"0\"></use></g><use x=\"5391\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"normal\">S</mi><mi mathvariant=\"normal\">k</mi><mi mathvariant=\"normal\">e</mi><mi mathvariant=\"normal\">w</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>,</mo><mrow><mi mathvariant=\"normal\">P</mi><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">f</mi></mrow><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">(\\textrm{Skew}_{2n},\\textrm{Pff})</script></span>, and <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"normal\">S</mi><mi mathvariant=\"normal\">y</mi><mi mathvariant=\"normal\">m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mo movablelimits=\"true\" form=\"prefix\">det</mo><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 5057.8 1125.3\" width=\"11.747ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(389,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-53\" y=\"0\"></use><use x=\"556\" xlink:href=\"#MJMAIN-79\" y=\"0\"></use><use x=\"1085\" xlink:href=\"#MJMAIN-6D\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2713\" xlink:href=\"#MJMATHI-6E\" y=\"-340\"></use></g><use x=\"2832\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(3277,0)\"><use xlink:href=\"#MJMAIN-64\"></use><use x=\"556\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-74\" y=\"0\"></use></g><use x=\"4668\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"normal\">S</mi><mi mathvariant=\"normal\">y</mi><mi mathvariant=\"normal\">m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mo form=\"prefix\" movablelimits=\"true\">det</mo><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">(\\textrm{Sym}_{n}, \\det )</script></span>. We then obtain an asymptotic for </p><span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><msub><mi>&#x03C0;</mi><mrow><mi>V</mi><mo>,</mo><mi>F</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>T</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi mathvariant=\"normal\">&#x0023;</mi><mo fence=\"false\" stretchy=\"false\">{</mo><mi>v</mi><mo>&#x2208;</mo><mi>V</mi><mo>:</mo><mo movablelimits=\"true\" form=\"prefix\">max</mo><mo stretchy=\"false\">(</mo><mrow><mo stretchy=\"false\">|</mo></mrow><msub><mi>v</mi><mrow><mi>i</mi></mrow></msub><mrow><mo stretchy=\"false\">|</mo></mrow><mo stretchy=\"false\">)</mo><mo>&#x2264;</mo><mi>T</mi><mo>,</mo><mi>F</mi><mo stretchy=\"false\">(</mo><mi>v</mi><mo stretchy=\"false\">)</mo><mtext>&#xA0;is prime</mtext><mo fence=\"false\" stretchy=\"false\">}</mo><mo>,</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.714ex\" role=\"img\" style=\"vertical-align: -0.806ex;\" viewbox=\"0 -821.4 22388.7 1168.4\" width=\"52ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C0\" y=\"0\"></use><g transform=\"translate(570,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-56\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"769\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1048\" xlink:href=\"#MJMATHI-46\" y=\"0\"></use></g><use x=\"1941\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"2331\" xlink:href=\"#MJMATHI-54\" y=\"0\"></use><use x=\"3035\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"3702\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"4759\" xlink:href=\"#MJMAIN-23\" y=\"0\"></use><use x=\"5592\" xlink:href=\"#MJMAIN-7B\" y=\"0\"></use><use x=\"6093\" xlink:href=\"#MJMATHI-76\" y=\"0\"></use><use x=\"6856\" xlink:href=\"#MJMAIN-2208\" y=\"0\"></use><use x=\"7801\" xlink:href=\"#MJMATHI-56\" y=\"0\"></use><use x=\"8848\" xlink:href=\"#MJMAIN-3A\" y=\"0\"></use><g transform=\"translate(9405,0)\"><use xlink:href=\"#MJMAIN-6D\"></use><use x=\"833\" xlink:href=\"#MJMAIN-61\" y=\"0\"></use><use x=\"1334\" xlink:href=\"#MJMAIN-78\" y=\"0\"></use></g><use x=\"11267\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"11657\" xlink:href=\"#MJMAIN-7C\" y=\"0\"></use><g transform=\"translate(11935,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-76\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"686\" xlink:href=\"#MJMATHI-69\" y=\"-213\"></use></g><use x=\"12765\" xlink:href=\"#MJMAIN-7C\" y=\"0\"></use><use x=\"13043\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"13711\" xlink:href=\"#MJMAIN-2264\" y=\"0\"></use><use x=\"14767\" xlink:href=\"#MJMATHI-54\" y=\"0\"></use><use x=\"15472\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"15917\" xlink:href=\"#MJMATHI-46\" y=\"0\"></use><use x=\"16666\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"17056\" xlink:href=\"#MJMATHI-76\" y=\"0\"></use><use x=\"17541\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><g transform=\"translate(17931,0)\"><use x=\"250\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use x=\"528\" xlink:href=\"#MJMAIN-73\" y=\"0\"></use><use x=\"1173\" xlink:href=\"#MJMAIN-70\" y=\"0\"></use><use x=\"1729\" xlink:href=\"#MJMAIN-72\" y=\"0\"></use><use x=\"2122\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use x=\"2400\" xlink:href=\"#MJMAIN-6D\" y=\"0\"></use><use x=\"3234\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use></g><use x=\"21609\" xlink:href=\"#MJMAIN-7D\" y=\"0\"></use><use x=\"22110\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use></g></svg><span role=\"presentation\"><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>π</mi><mrow><mi>V</mi><mo>,</mo><mi>F</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>T</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi mathvariant=\"normal\">#</mi><mo fence=\"false\" stretchy=\"false\">{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>:</mo><mo form=\"prefix\" movablelimits=\"true\">max</mo><mo stretchy=\"false\">(</mo><mrow><mo stretchy=\"false\">|</mo></mrow><msub><mi>v</mi><mrow><mi>i</mi></mrow></msub><mrow><mo stretchy=\"false\">|</mo></mrow><mo stretchy=\"false\">)</mo><mo>≤</mo><mi>T</mi><mo>,</mo><mi>F</mi><mo stretchy=\"false\">(</mo><mi>v</mi><mo stretchy=\"false\">)</mo><mtext> is prime</mtext><mo fence=\"false\" stretchy=\"false\">}</mo><mo>,</mo></math></span></span><script type=\"math/tex; mode=display\"> \\pi _{V,F}(T)= \\#\\{v\\in V: \\max (|v_{i}|)\\leq T, F(v) \\text{ is prime}\\}, </script></span><p> that matches the Bateman-Horn prediction.</p><p>The key ingredients of our proof are an asymptotic count for integral points on the level sets of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.909ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -733.9 749.5 822.1\" width=\"1.741ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-46\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math></span></span><script type=\"math/tex\">F</script></span> given by Linnik equidistribution, a geometric approximation of the box by cones, and an upper bound sieve to bound the number of prime values missed by the approximation. In the case of the determinant polynomial on symmetric matrices, we must also use the Siegel mass formula to compute the product of local densities for the main term.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"31 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prime Number Theorems for Polynomials from Homogeneous Dynamics\",\"authors\":\"Giorgos Kotsovolis, Katharine Woo\",\"doi\":\"10.1007/s00039-025-00716-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish a new class of examples of the multivariate Bateman-Horn conjecture by using tools from dynamics. These cases include the determinant polynomial on the space of <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi><mo>&#x00D7;</mo><mi>n</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.509ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -561.7 2423.9 649.8\\\" width=\\\"5.63ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"822\\\" xlink:href=\\\"#MJMAIN-D7\\\" y=\\\"0\\\"></use><use x=\\\"1823\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi><mo>×</mo><mi>n</mi></math></span></span><script type=\\\"math/tex\\\">n\\\\times n</script></span> matrices, the Pfaffian on the space of skew-symmetric <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi>n</mi><mo>&#x00D7;</mo><mn>2</mn><mi>n</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.909ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -733.9 3424.9 822.1\\\" width=\\\"7.955ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"1323\\\" xlink:href=\\\"#MJMAIN-D7\\\" y=\\\"0\\\"></use><use x=\\\"2323\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"2824\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi>n</mi><mo>×</mo><mn>2</mn><mi>n</mi></math></span></span><script type=\\\"math/tex\\\">2n\\\\times 2n</script></span> matrices, and the determinant polynomial on the space of symmetric <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi><mo>&#x00D7;</mo><mi>n</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.512ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -562.7 2423.9 650.9\\\" width=\\\"5.63ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"822\\\" xlink:href=\\\"#MJMAIN-D7\\\" y=\\\"0\\\"></use><use x=\\\"1823\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi><mo>×</mo><mi>n</mi></math></span></span><script type=\\\"math/tex\\\">n\\\\times n</script></span> matrices. In particular, let <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mi>V</mi><mo>,</mo><mi>F</mi><mo stretchy=\\\"false\\\">)</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 2743.2 1125.3\\\" width=\\\"6.371ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"389\\\" xlink:href=\\\"#MJMATHI-56\\\" y=\\\"0\\\"></use><use x=\\\"1159\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1604\\\" xlink:href=\\\"#MJMATHI-46\\\" y=\\\"0\\\"></use><use x=\\\"2353\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mi>V</mi><mo>,</mo><mi>F</mi><mo stretchy=\\\"false\\\">)</mo></math></span></span><script type=\\\"math/tex\\\">(V,F)</script></span> be any pair among the following: <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"normal\\\">M</mi><mi mathvariant=\\\"normal\\\">a</mi><mi mathvariant=\\\"normal\\\">t</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">det</mo><mo stretchy=\\\"false\\\">)</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 4946.8 1125.3\\\" width=\\\"11.489ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><g transform=\\\"translate(389,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-4D\\\" y=\\\"0\\\"></use><use x=\\\"917\\\" xlink:href=\\\"#MJMAIN-61\\\" y=\\\"0\\\"></use><use x=\\\"1418\\\" xlink:href=\\\"#MJMAIN-74\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"2556\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"-213\\\"></use></g><use x=\\\"2721\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(3166,0)\\\"><use xlink:href=\\\"#MJMAIN-64\\\"></use><use x=\\\"556\\\" xlink:href=\\\"#MJMAIN-65\\\" y=\\\"0\\\"></use><use x=\\\"1001\\\" xlink:href=\\\"#MJMAIN-74\\\" y=\\\"0\\\"></use></g><use x=\\\"4557\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"normal\\\">M</mi><mi mathvariant=\\\"normal\\\">a</mi><mi mathvariant=\\\"normal\\\">t</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mo form=\\\"prefix\\\" movablelimits=\\\"true\\\">det</mo><mo stretchy=\\\"false\\\">)</mo></math></span></span><script type=\\\"math/tex\\\">(\\\\textrm{Mat}_{n}, \\\\det )</script></span>, <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"normal\\\">S</mi><mi mathvariant=\\\"normal\\\">k</mi><mi mathvariant=\\\"normal\\\">e</mi><mi mathvariant=\\\"normal\\\">w</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>,</mo><mrow><mi mathvariant=\\\"normal\\\">P</mi><mi mathvariant=\\\"normal\\\">f</mi><mi mathvariant=\\\"normal\\\">f</mi></mrow><mo stretchy=\\\"false\\\">)</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 5781.2 1125.3\\\" width=\\\"13.427ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><g transform=\\\"translate(389,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-53\\\" y=\\\"0\\\"></use><use x=\\\"556\\\" xlink:href=\\\"#MJMAIN-6B\\\" y=\\\"0\\\"></use><use x=\\\"1085\\\" xlink:href=\\\"#MJMAIN-65\\\" y=\\\"0\\\"></use><use x=\\\"1529\\\" xlink:href=\\\"#MJMAIN-77\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2252,-150)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use></g></g><use x=\\\"3520\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(3965,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-50\\\" y=\\\"0\\\"></use><use x=\\\"681\\\" xlink:href=\\\"#MJMAIN-66\\\" y=\\\"0\\\"></use><use x=\\\"1054\\\" xlink:href=\\\"#MJMAIN-66\\\" y=\\\"0\\\"></use></g><use x=\\\"5391\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"normal\\\">S</mi><mi mathvariant=\\\"normal\\\">k</mi><mi mathvariant=\\\"normal\\\">e</mi><mi mathvariant=\\\"normal\\\">w</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>,</mo><mrow><mi mathvariant=\\\"normal\\\">P</mi><mi mathvariant=\\\"normal\\\">f</mi><mi mathvariant=\\\"normal\\\">f</mi></mrow><mo stretchy=\\\"false\\\">)</mo></math></span></span><script type=\\\"math/tex\\\">(\\\\textrm{Skew}_{2n},\\\\textrm{Pff})</script></span>, and <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"normal\\\">S</mi><mi mathvariant=\\\"normal\\\">y</mi><mi mathvariant=\\\"normal\\\">m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">det</mo><mo stretchy=\\\"false\\\">)</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 5057.8 1125.3\\\" width=\\\"11.747ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><g transform=\\\"translate(389,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-53\\\" y=\\\"0\\\"></use><use x=\\\"556\\\" xlink:href=\\\"#MJMAIN-79\\\" y=\\\"0\\\"></use><use x=\\\"1085\\\" xlink:href=\\\"#MJMAIN-6D\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"2713\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"-340\\\"></use></g><use x=\\\"2832\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(3277,0)\\\"><use xlink:href=\\\"#MJMAIN-64\\\"></use><use x=\\\"556\\\" xlink:href=\\\"#MJMAIN-65\\\" y=\\\"0\\\"></use><use x=\\\"1001\\\" xlink:href=\\\"#MJMAIN-74\\\" y=\\\"0\\\"></use></g><use x=\\\"4668\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"normal\\\">S</mi><mi mathvariant=\\\"normal\\\">y</mi><mi mathvariant=\\\"normal\\\">m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mo form=\\\"prefix\\\" movablelimits=\\\"true\\\">det</mo><mo stretchy=\\\"false\\\">)</mo></math></span></span><script type=\\\"math/tex\\\">(\\\\textrm{Sym}_{n}, \\\\det )</script></span>. We then obtain an asymptotic for </p><span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"><msub><mi>&#x03C0;</mi><mrow><mi>V</mi><mo>,</mo><mi>F</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>T</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mi mathvariant=\\\"normal\\\">&#x0023;</mi><mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mo><mi>v</mi><mo>&#x2208;</mo><mi>V</mi><mo>:</mo><mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">max</mo><mo stretchy=\\\"false\\\">(</mo><mrow><mo stretchy=\\\"false\\\">|</mo></mrow><msub><mi>v</mi><mrow><mi>i</mi></mrow></msub><mrow><mo stretchy=\\\"false\\\">|</mo></mrow><mo stretchy=\\\"false\\\">)</mo><mo>&#x2264;</mo><mi>T</mi><mo>,</mo><mi>F</mi><mo stretchy=\\\"false\\\">(</mo><mi>v</mi><mo stretchy=\\\"false\\\">)</mo><mtext>&#xA0;is prime</mtext><mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mo><mo>,</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.714ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.806ex;\\\" viewbox=\\\"0 -821.4 22388.7 1168.4\\\" width=\\\"52ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3C0\\\" y=\\\"0\\\"></use><g transform=\\\"translate(570,-150)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-56\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"769\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1048\\\" xlink:href=\\\"#MJMATHI-46\\\" y=\\\"0\\\"></use></g><use x=\\\"1941\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"2331\\\" xlink:href=\\\"#MJMATHI-54\\\" y=\\\"0\\\"></use><use x=\\\"3035\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"3702\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"4759\\\" xlink:href=\\\"#MJMAIN-23\\\" y=\\\"0\\\"></use><use x=\\\"5592\\\" xlink:href=\\\"#MJMAIN-7B\\\" y=\\\"0\\\"></use><use x=\\\"6093\\\" xlink:href=\\\"#MJMATHI-76\\\" y=\\\"0\\\"></use><use x=\\\"6856\\\" xlink:href=\\\"#MJMAIN-2208\\\" y=\\\"0\\\"></use><use x=\\\"7801\\\" xlink:href=\\\"#MJMATHI-56\\\" y=\\\"0\\\"></use><use x=\\\"8848\\\" xlink:href=\\\"#MJMAIN-3A\\\" y=\\\"0\\\"></use><g transform=\\\"translate(9405,0)\\\"><use xlink:href=\\\"#MJMAIN-6D\\\"></use><use x=\\\"833\\\" xlink:href=\\\"#MJMAIN-61\\\" y=\\\"0\\\"></use><use x=\\\"1334\\\" xlink:href=\\\"#MJMAIN-78\\\" y=\\\"0\\\"></use></g><use x=\\\"11267\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"11657\\\" xlink:href=\\\"#MJMAIN-7C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(11935,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-76\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"686\\\" xlink:href=\\\"#MJMATHI-69\\\" y=\\\"-213\\\"></use></g><use x=\\\"12765\\\" xlink:href=\\\"#MJMAIN-7C\\\" y=\\\"0\\\"></use><use x=\\\"13043\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"13711\\\" xlink:href=\\\"#MJMAIN-2264\\\" y=\\\"0\\\"></use><use x=\\\"14767\\\" xlink:href=\\\"#MJMATHI-54\\\" y=\\\"0\\\"></use><use x=\\\"15472\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"15917\\\" xlink:href=\\\"#MJMATHI-46\\\" y=\\\"0\\\"></use><use x=\\\"16666\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"17056\\\" xlink:href=\\\"#MJMATHI-76\\\" y=\\\"0\\\"></use><use x=\\\"17541\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><g transform=\\\"translate(17931,0)\\\"><use x=\\\"250\\\" xlink:href=\\\"#MJMAIN-69\\\" y=\\\"0\\\"></use><use x=\\\"528\\\" xlink:href=\\\"#MJMAIN-73\\\" y=\\\"0\\\"></use><use x=\\\"1173\\\" xlink:href=\\\"#MJMAIN-70\\\" y=\\\"0\\\"></use><use x=\\\"1729\\\" xlink:href=\\\"#MJMAIN-72\\\" y=\\\"0\\\"></use><use x=\\\"2122\\\" xlink:href=\\\"#MJMAIN-69\\\" y=\\\"0\\\"></use><use x=\\\"2400\\\" xlink:href=\\\"#MJMAIN-6D\\\" y=\\\"0\\\"></use><use x=\\\"3234\\\" xlink:href=\\\"#MJMAIN-65\\\" y=\\\"0\\\"></use></g><use x=\\\"21609\\\" xlink:href=\\\"#MJMAIN-7D\\\" y=\\\"0\\\"></use><use x=\\\"22110\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math display=\\\"block\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>π</mi><mrow><mi>V</mi><mo>,</mo><mi>F</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>T</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mi mathvariant=\\\"normal\\\">#</mi><mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>:</mo><mo form=\\\"prefix\\\" movablelimits=\\\"true\\\">max</mo><mo stretchy=\\\"false\\\">(</mo><mrow><mo stretchy=\\\"false\\\">|</mo></mrow><msub><mi>v</mi><mrow><mi>i</mi></mrow></msub><mrow><mo stretchy=\\\"false\\\">|</mo></mrow><mo stretchy=\\\"false\\\">)</mo><mo>≤</mo><mi>T</mi><mo>,</mo><mi>F</mi><mo stretchy=\\\"false\\\">(</mo><mi>v</mi><mo stretchy=\\\"false\\\">)</mo><mtext> is prime</mtext><mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mo><mo>,</mo></math></span></span><script type=\\\"math/tex; mode=display\\\"> \\\\pi _{V,F}(T)= \\\\#\\\\{v\\\\in V: \\\\max (|v_{i}|)\\\\leq T, F(v) \\\\text{ is prime}\\\\}, </script></span><p> that matches the Bateman-Horn prediction.</p><p>The key ingredients of our proof are an asymptotic count for integral points on the level sets of <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>F</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.909ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -733.9 749.5 822.1\\\" width=\\\"1.741ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-46\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>F</mi></math></span></span><script type=\\\"math/tex\\\">F</script></span> given by Linnik equidistribution, a geometric approximation of the box by cones, and an upper bound sieve to bound the number of prime values missed by the approximation. In the case of the determinant polynomial on symmetric matrices, we must also use the Siegel mass formula to compute the product of local densities for the main term.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-025-00716-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-025-00716-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用