José Alberto Fernández-Zepeda, Alejandro Flores-Lamas, Matthew Hague, Joel Antonio Trejo-Sánchez
{"title":"树上最大俱乐部问题的动态规划算法","authors":"José Alberto Fernández-Zepeda, Alejandro Flores-Lamas, Matthew Hague, Joel Antonio Trejo-Sánchez","doi":"10.1016/j.ejor.2025.08.031","DOIUrl":null,"url":null,"abstract":"Computing cliques in an undirected graph <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi>G</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> is a fundamental problem in social network analysis. However, in some cases, the strict definition of a clique (a subset of vertices pairwise adjacent in <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mi>G</mml:mi></mml:math>) often limits its applicability in real-world settings. To address this issue, we study the <mml:math altimg=\"si265.svg\" display=\"inline\"><mml:mi>s</mml:mi></mml:math>-club: a clique relaxation that induces a subgraph of diameter at most <mml:math altimg=\"si265.svg\" display=\"inline\"><mml:mi>s</mml:mi></mml:math>. Note that a clique is simply a 1-club. Computing a maximum <mml:math altimg=\"si265.svg\" display=\"inline\"><mml:mi>s</mml:mi></mml:math>-club is a computationally challenging problem, as it is NP-hard for any positive integer <mml:math altimg=\"si265.svg\" display=\"inline\"><mml:mi>s</mml:mi></mml:math> in arbitrary graphs. Thus, this paper presents a simple dynamic programming algorithm that efficiently computes a maximum <mml:math altimg=\"si265.svg\" display=\"inline\"><mml:mi>s</mml:mi></mml:math>-club on an <mml:math altimg=\"si8.svg\" display=\"inline\"><mml:mi>n</mml:mi></mml:math>-vertex tree in <mml:math altimg=\"si9.svg\" display=\"inline\"><mml:mrow><mml:mi>O</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>s</mml:mi><mml:mi>⋅</mml:mi><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> time. This algorithm outperforms existing algorithms for trees in theory and practice. This approach is a stepping stone towards computing maximum <mml:math altimg=\"si265.svg\" display=\"inline\"><mml:mi>s</mml:mi></mml:math>-clubs on tree-like graphs.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"11 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamic programming algorithm for the maximum [formula omitted]-club problem on trees\",\"authors\":\"José Alberto Fernández-Zepeda, Alejandro Flores-Lamas, Matthew Hague, Joel Antonio Trejo-Sánchez\",\"doi\":\"10.1016/j.ejor.2025.08.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing cliques in an undirected graph <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>G</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> is a fundamental problem in social network analysis. However, in some cases, the strict definition of a clique (a subset of vertices pairwise adjacent in <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mi>G</mml:mi></mml:math>) often limits its applicability in real-world settings. To address this issue, we study the <mml:math altimg=\\\"si265.svg\\\" display=\\\"inline\\\"><mml:mi>s</mml:mi></mml:math>-club: a clique relaxation that induces a subgraph of diameter at most <mml:math altimg=\\\"si265.svg\\\" display=\\\"inline\\\"><mml:mi>s</mml:mi></mml:math>. Note that a clique is simply a 1-club. Computing a maximum <mml:math altimg=\\\"si265.svg\\\" display=\\\"inline\\\"><mml:mi>s</mml:mi></mml:math>-club is a computationally challenging problem, as it is NP-hard for any positive integer <mml:math altimg=\\\"si265.svg\\\" display=\\\"inline\\\"><mml:mi>s</mml:mi></mml:math> in arbitrary graphs. Thus, this paper presents a simple dynamic programming algorithm that efficiently computes a maximum <mml:math altimg=\\\"si265.svg\\\" display=\\\"inline\\\"><mml:mi>s</mml:mi></mml:math>-club on an <mml:math altimg=\\\"si8.svg\\\" display=\\\"inline\\\"><mml:mi>n</mml:mi></mml:math>-vertex tree in <mml:math altimg=\\\"si9.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>O</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>s</mml:mi><mml:mi>⋅</mml:mi><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> time. This algorithm outperforms existing algorithms for trees in theory and practice. This approach is a stepping stone towards computing maximum <mml:math altimg=\\\"si265.svg\\\" display=\\\"inline\\\"><mml:mi>s</mml:mi></mml:math>-clubs on tree-like graphs.\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejor.2025.08.031\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.08.031","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
A dynamic programming algorithm for the maximum [formula omitted]-club problem on trees
Computing cliques in an undirected graph G=(VG,EG) is a fundamental problem in social network analysis. However, in some cases, the strict definition of a clique (a subset of vertices pairwise adjacent in G) often limits its applicability in real-world settings. To address this issue, we study the s-club: a clique relaxation that induces a subgraph of diameter at most s. Note that a clique is simply a 1-club. Computing a maximum s-club is a computationally challenging problem, as it is NP-hard for any positive integer s in arbitrary graphs. Thus, this paper presents a simple dynamic programming algorithm that efficiently computes a maximum s-club on an n-vertex tree in O(s⋅n) time. This algorithm outperforms existing algorithms for trees in theory and practice. This approach is a stepping stone towards computing maximum s-clubs on tree-like graphs.
期刊介绍:
The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.