模拟早期地球:星云时代的地核形成并不能保证高He/ He比率

IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Madelyn Sita, Marvin Osorio, Colin Jackson, Sujoy Mukhopadhyay
{"title":"模拟早期地球:星云时代的地核形成并不能保证高He/ He比率","authors":"Madelyn Sita, Marvin Osorio, Colin Jackson, Sujoy Mukhopadhyay","doi":"10.1016/j.gca.2025.08.022","DOIUrl":null,"url":null,"abstract":"Ocean island basalts (OIBs) sourced from mantle plumes contain a high <ce:sup loc=\"pre\">3</ce:sup>He/<ce:sup loc=\"pre\">4</ce:sup>He component, marking the lower mantle as a potential reservoir for primordial, less degassed, material. Some of these same samples have been observed to contain low <ce:sup loc=\"pre\">182</ce:sup>W/<ce:sup loc=\"pre\">184</ce:sup>W isotope ratios, which suggest the formation of high <ce:sup loc=\"pre\">3</ce:sup>He/<ce:sup loc=\"pre\">4</ce:sup>He reservoirs occurred during the early stages of Earth’s formation and point to the core as, potentially, the ultimate source of high <ce:sup loc=\"pre\">3</ce:sup>He/<ce:sup loc=\"pre\">4</ce:sup>He materials. We developed a computational model to investigate parameters that affect the time-integrated He/(U+Th) ratio present in the core in order to establish the conditions during planetary formation that favor the formation of a high <ce:sup loc=\"pre\">3</ce:sup>He/<ce:sup loc=\"pre\">4</ce:sup>He reservoir in the core. The parameters investigated are representative of the processes responsible for transporting primordial <ce:sup loc=\"pre\">3</ce:sup>He from the nebular atmosphere and the refractory elements U and Th from the silicate magma ocean into the protoplanets’ differentiated core. The parameters investigated include the radius of the protoplanet, timescale of accretion (<mml:math altimg=\"si111.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mi>τ</mml:mi></mml:mrow><mml:mrow><mml:mi>a</mml:mi><mml:mi>c</mml:mi><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:math>), optical opacity of the atmosphere (<mml:math altimg=\"si112.svg\" display=\"inline\"><mml:mi>κ</mml:mi></mml:math>), amount of Si in the bulk planet (<mml:math altimg=\"si145.svg\" display=\"inline\"><mml:mi>ϕ</mml:mi></mml:math>), depth of magma ocean-core equilibration, magma ocean thermal gradient, and the metal-silicate partition coefficient of He (D<mml:math altimg=\"si4.svg\" display=\"inline\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi>H</mml:mi><mml:mi>e</mml:mi></mml:mrow></mml:msub></mml:math>). The model results, obtained through random sampling of the parameter space, indicated that protoplanets which undergo relatively slow accretion during the lifetime of the solar nebula but still reach sizes larger than 4500 km, protoplanets with optically thin atmospheres, and protoplanets that maintain relatively shallow and cool magma oceans will preferentially develop high <ce:sup loc=\"pre\">3</ce:sup>He/<ce:sup loc=\"pre\">4</ce:sup>He cores. Overall, Earth’s core could serve as a reservoir for primordial helium, but current parameter space makes the core’s <ce:sup loc=\"pre\">3</ce:sup>He/<ce:sup loc=\"pre\">4</ce:sup>He ratio highly uncertain.","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"35 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the early Earth: Core formation in the nebular era does not guarantee a high [formula omitted]He/[formula omitted]He ratio\",\"authors\":\"Madelyn Sita, Marvin Osorio, Colin Jackson, Sujoy Mukhopadhyay\",\"doi\":\"10.1016/j.gca.2025.08.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ocean island basalts (OIBs) sourced from mantle plumes contain a high <ce:sup loc=\\\"pre\\\">3</ce:sup>He/<ce:sup loc=\\\"pre\\\">4</ce:sup>He component, marking the lower mantle as a potential reservoir for primordial, less degassed, material. Some of these same samples have been observed to contain low <ce:sup loc=\\\"pre\\\">182</ce:sup>W/<ce:sup loc=\\\"pre\\\">184</ce:sup>W isotope ratios, which suggest the formation of high <ce:sup loc=\\\"pre\\\">3</ce:sup>He/<ce:sup loc=\\\"pre\\\">4</ce:sup>He reservoirs occurred during the early stages of Earth’s formation and point to the core as, potentially, the ultimate source of high <ce:sup loc=\\\"pre\\\">3</ce:sup>He/<ce:sup loc=\\\"pre\\\">4</ce:sup>He materials. We developed a computational model to investigate parameters that affect the time-integrated He/(U+Th) ratio present in the core in order to establish the conditions during planetary formation that favor the formation of a high <ce:sup loc=\\\"pre\\\">3</ce:sup>He/<ce:sup loc=\\\"pre\\\">4</ce:sup>He reservoir in the core. The parameters investigated are representative of the processes responsible for transporting primordial <ce:sup loc=\\\"pre\\\">3</ce:sup>He from the nebular atmosphere and the refractory elements U and Th from the silicate magma ocean into the protoplanets’ differentiated core. The parameters investigated include the radius of the protoplanet, timescale of accretion (<mml:math altimg=\\\"si111.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow><mml:mi>τ</mml:mi></mml:mrow><mml:mrow><mml:mi>a</mml:mi><mml:mi>c</mml:mi><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:math>), optical opacity of the atmosphere (<mml:math altimg=\\\"si112.svg\\\" display=\\\"inline\\\"><mml:mi>κ</mml:mi></mml:math>), amount of Si in the bulk planet (<mml:math altimg=\\\"si145.svg\\\" display=\\\"inline\\\"><mml:mi>ϕ</mml:mi></mml:math>), depth of magma ocean-core equilibration, magma ocean thermal gradient, and the metal-silicate partition coefficient of He (D<mml:math altimg=\\\"si4.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi>H</mml:mi><mml:mi>e</mml:mi></mml:mrow></mml:msub></mml:math>). The model results, obtained through random sampling of the parameter space, indicated that protoplanets which undergo relatively slow accretion during the lifetime of the solar nebula but still reach sizes larger than 4500 km, protoplanets with optically thin atmospheres, and protoplanets that maintain relatively shallow and cool magma oceans will preferentially develop high <ce:sup loc=\\\"pre\\\">3</ce:sup>He/<ce:sup loc=\\\"pre\\\">4</ce:sup>He cores. Overall, Earth’s core could serve as a reservoir for primordial helium, but current parameter space makes the core’s <ce:sup loc=\\\"pre\\\">3</ce:sup>He/<ce:sup loc=\\\"pre\\\">4</ce:sup>He ratio highly uncertain.\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gca.2025.08.022\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2025.08.022","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

源自地幔柱的洋岛玄武岩(OIBs)含有高的3He/4He成分,表明下地幔是原始的、脱气较少的物质的潜在储集层。其中一些样品的182W/184W同位素比值较低,这表明高3He/4He储层的形成发生在地球形成的早期阶段,并指出地核可能是高3He/4He物质的最终来源。我们开发了一个计算模型来研究影响岩心中时间积分He/(U+Th)比的参数,以确定行星形成过程中有利于岩心中形成高3He/4He储层的条件。所研究的参数代表了将星云大气中的原始3He和硅酸盐岩浆海洋中的难熔元素U和Th输送到原行星分异核中的过程。研究的参数包括原行星的半径、吸积时间标度τacc、大气的光学不透明度κ、体积行星中Si的含量φ、岩浆海核平衡深度、岩浆海热梯度和He的金属硅酸盐分配系数DHe。通过对参数空间的随机采样得到的模型结果表明,在太阳星云生命周期内吸积相对缓慢但体积仍大于4500 km的原行星、具有较薄大气的原行星以及保持相对较浅和较冷岩浆海洋的原行星将优先形成高3He/4He核。总的来说,地核可以作为原始氦的储存库,但目前的参数空间使得地核的3He/4He比例高度不确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the early Earth: Core formation in the nebular era does not guarantee a high [formula omitted]He/[formula omitted]He ratio
Ocean island basalts (OIBs) sourced from mantle plumes contain a high 3He/4He component, marking the lower mantle as a potential reservoir for primordial, less degassed, material. Some of these same samples have been observed to contain low 182W/184W isotope ratios, which suggest the formation of high 3He/4He reservoirs occurred during the early stages of Earth’s formation and point to the core as, potentially, the ultimate source of high 3He/4He materials. We developed a computational model to investigate parameters that affect the time-integrated He/(U+Th) ratio present in the core in order to establish the conditions during planetary formation that favor the formation of a high 3He/4He reservoir in the core. The parameters investigated are representative of the processes responsible for transporting primordial 3He from the nebular atmosphere and the refractory elements U and Th from the silicate magma ocean into the protoplanets’ differentiated core. The parameters investigated include the radius of the protoplanet, timescale of accretion (τacc), optical opacity of the atmosphere (κ), amount of Si in the bulk planet (ϕ), depth of magma ocean-core equilibration, magma ocean thermal gradient, and the metal-silicate partition coefficient of He (DHe). The model results, obtained through random sampling of the parameter space, indicated that protoplanets which undergo relatively slow accretion during the lifetime of the solar nebula but still reach sizes larger than 4500 km, protoplanets with optically thin atmospheres, and protoplanets that maintain relatively shallow and cool magma oceans will preferentially develop high 3He/4He cores. Overall, Earth’s core could serve as a reservoir for primordial helium, but current parameter space makes the core’s 3He/4He ratio highly uncertain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信